首页> 外文OA文献 >An Examination of Diameter Density Prediction with k-NN and Airborne Lidar
【2h】

An Examination of Diameter Density Prediction with k-NN and Airborne Lidar

机译:用K-NN和空气载流的直径密度预测检查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While lidar-based forest inventory methods have been widely demonstrated, performances of methods to predict tree diameters with airborne lidar (lidar) are not well understood. One cause for this is that the performance metrics typically used in studies for prediction of diameters can be difficult to interpret, and may not support comparative inferences between sampling designs and study areas. To help with this problem we propose two indices and use them to evaluate a variety of lidar and k nearest neighbor (k-NN) strategies for prediction of tree diameter distributions. The indices are based on the coefficient of determination (R2), and root mean square deviation (RMSD). Both of the indices are highly interpretable, and the RMSD-based index facilitates comparisons with alternative (non-lidar) inventory strategies, and with projects in other regions. K-NN diameter distribution prediction strategies were examined using auxiliary lidar for 190 training plots distribute across the 800 km2 Savannah River Site in South Carolina, USA. We evaluate the performance of k-NN with respect to distance metrics, number of neighbors, predictor sets, and response sets. K-NN and lidar explained 80% of variability in diameters, and Mahalanobis distance with k = 3 neighbors performed best according to a number of criteria.
机译:虽然基于LIDAR的森林库存方法已被广泛证明,但预测具有空气传播激光雷达(LIDAR)树径(LIDAR)的方法的性能并不了解。其中一个原因是通常用于预测直径的研究的性能度量可能难以解释,并且可能不支持采样设计和研究区域之间的比较推断。为了帮助解决这个问题,我们提出了两个指数并使用它们来评估各种LIDAR和K最近邻(K-NN)策略,以预测树径分布。索引基于确定系数(R2)和根均方偏差(RMSD)。这两项指数都是高度可解释的,基于RMSD的指数有助于与替代(非LIDAR)库存策略的比较,以及其他地区的项目。在美国南卡罗来纳州的800平方公司萨凡纳河现场分布于190辆培训地块的辅助激光雷达,检查了K-NN直径分布预测策略。我们评估K-NN关于距离度量,邻居数量,预测器集和响应集的性能。 K-NN和LIDAR解释了80%的直径的可变性,Mahalanobis与K = 3邻居的距离最佳,根据许多标准表现最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号