首页> 外文OA文献 >BatchJobsandBatchExperiments: Abstraction Mechanisms for UsingRin Batch Environments
【2h】

BatchJobsandBatchExperiments: Abstraction Mechanisms for UsingRin Batch Environments

机译:BatchjobsandbatchExperiment:使用批次环境的抽象机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Empirical analysis of statistical algorithms often demands time-consuming experiments. We present two R packages which greatly simplify working in batch computing environments. The package BatchJobs implements the basic objects and procedures to control any batch cluster from within R. It is structured around cluster versions of the well-known higher order functions Map, Reduce and Filter from functional programming. Computations are performed asynchronously and all job states are persistently stored in a database, which can be queried at any point in time. The second package, BatchExperiments, is tailored for the still very general scenario of analyzing arbitrary algorithms on problem instances. It extends package BatchJobs by letting the user define an array of jobs of the kind apply algorithm A to problem instance P and store results. It is possible to associate statistical designs with parameters of problems and algorithms and therefore to systematically study their influence on the results.The packages main features are: (a) Convenient usage: All relevant batch system operations are either handled internally or mapped to simple R functions. (b) Portability: Both packages use a clear and well-defined interface to the batch system which makes them applicable in most high-performance computing environments. (c) Reproducibility: Every computational part has an associated seed to ensure reproducibility even when the underlying batch system changes. (d) Abstraction and good software design: The code layers for algorithms, experiment definitions and execution are cleanly separated and enable the writing of readable and maintainable code.
机译:统计算法的实证分析通常需要耗时的实验。我们提出了两个R包,这极大地简化了在批量计算环境中工作。包BatchJobs实现了从R内部控制任何批处理群集的基本对象和过程。它在众所周知的高阶功能映射的集群版本中构建,从功能编程中减少和过滤。计算以异步执行,所有作业状态都持久地存储在数据库中,可以在任何时间点查询。第二个包装,批量分解,用于在问题实例上分析任意算法的仍然非常一般的场景。它通过让用户定义对实际应用算法A的作业数组来延伸包Batchjobs,以解决问题实例P并存储结果。可以将统计设计与问题和算法的参数相关联,因此可以系统地研究它们对结果的影响。包的主要特点是:(a)使用方便:所有相关的批处理系统操作都在内部或映射到简单的r职能。 (b)可移植性:两个软件包都使用批处理系统清晰且明确定义的接口,这使得它们适用于最高性能的计算环境。 (c)再现性:每个计算部分都有一个相关的种子,即使在底层批处理系统发生变化时也能够确保可重复性。 (d)抽象和良好的软件设计:算法的代码层,实验定义和执行干净地分离并启用可读和可维护的代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号