首页> 外文OA文献 >Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data
【2h】

Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data

机译:利用Landsat数据监测中国黄河三角洲土壤盐渍化的季节性动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In regions with distinct seasons, soil salinity usuallyvaries greatly by season. Thus, the seasonal dynamics of soil salinizationmust be monitored to prevent and control soil salinity hazards and to reduceecological risk. This article took the Kenli District in the Yellow Riverdelta (YRD) of China as the experimental area. Based on Landsat data fromspring and autumn, improved vegetation indices (IVIs) were created and thenapplied to inversion modeling of the soil salinity content (SSC) byemploying stepwise multiple linear regression, back propagation neuralnetwork and support vector machine methods. Finally, the optimal SSC modelin each season was extracted, and the spatial distributions and seasonaldynamics of SSC within a year were analyzed. The results indicated that theSSC varied by season in the YRD, and the support vector machine methodoffered the best SSC inversion models for the precision of the calibrationset (R2>0.72, RMSE < 6.34 g kg−1) and the validationset (R2>0.71, RMSE < 6.00 g kg−1 and RPD > 1.66). The best SSC inversion model for spring could be applied to the SSCinversion in winter (R2 of 0.66), and the best model for autumn could be applied to the SSC inversion in summer (R2 of 0.65). The SSC exhibited a gradual increasing trend from the southwest to northeast in the Kenli District. The SSC also underwent the following seasonal dynamics: soil salinity accumulated in spring, decreased in summer, increased in autumn and reached its peak at the end of winter. This work provides data support for the control of soil salinity hazards and utilization of saline–alkali soil in the YRD.
机译:在具有独特季节的地区,季节性盐度的土壤盐度。因此,监测土壤盐渍化季节性的季节性动态,以防止和控制土壤盐度危害和效率的风险。本文占据了中国黄河德拉斯(YRD)的Kenli区作为实验区。基于Landsat数据从Sulspring和秋季,改进的植被指数(IVIS)被创建,然后逐步建模到土壤盐度内容(SSC)的反转建模(SSC)通过逐步多元线性回归,反向传播NeuralNetwork和支持向量机方法。最后,提取了每个季节的最佳SSC Modelin,分析了一年内SSC的空间分布和季节性动力学。结果表明,Thessc在YRD季节各种各样的季节,支持向量机提供了最佳SSC反转模型,用于校准的精度(R2> 0.72,RMSE <6.34g KG-1)和验证集(R2> 0.71, RMSE <6.00 G KG-1和RPD> 1.66)。弹簧的最佳SSC反转模型可以应用于冬季的SScinversion(R2为0.66),并且秋季的最佳模型可以应用于夏季的SSC反转(R2为0.65)。 SSC从肯蒂区到东北的西南逐渐增加了逐步增加的趋势。 SSC还经历了以下季节性动态:春季积累的土壤盐度,夏季下降,秋季增加,冬季结束时达到了峰值。这项工作为控制yrd中的盐碱土壤的土壤盐度危害和利用提供了数据支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号