首页> 外文OA文献 >Novel Platform Development Using an Assembly of Carbon Nanotube, Nanogold and Immobilized RNA Capture Element towards Rapid, Selective Sensing of Bacteria
【2h】

Novel Platform Development Using an Assembly of Carbon Nanotube, Nanogold and Immobilized RNA Capture Element towards Rapid, Selective Sensing of Bacteria

机译:使用碳纳米管,纳米金和固定化RNA捕获元件组装的新型平台,可快速,选择性地感应细菌。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study examines the creation of a nano-featured biosensor platform designed for the rapid and selective detection of the bacterium Escherichia coli. The foundation of this sensor is carbon nanotubes decorated with gold nanoparticles that are modified with a specific, surface adherent ribonucleic acid (RNA) sequence element. The multi-step sensor assembly was accomplished by growing carbon nanotubes on a graphite substrate, the direct synthesis of gold nanoparticles on the nanotube surface, and the attachment of thiolated RNA to the bound nanoparticles.The application of the compounded nanomaterials for sensor development has the distinct advantage of retaining the electrical behavior property of carbon nanotubes and, through the gold nanoparticles, incorporating an increased surface area for additional analyte attachment sites, thus increasing sensitivity. We successfully demonstrated that the coating of gold nanoparticles with a selective RNA sequence increased the capture of E. coli by 189% when compared to uncoated particles.The approach to sensor formation detailed in this study illustrates the great potential of unique composite structures in the development of a multi-array, electrochemical sensor for the fast and sensitive detection of pathogens.
机译:这项研究检查了纳米功能生物传感器平台的创建,该平台旨在快速,选择性地检测大肠杆菌。该传感器的基础是装饰有金纳米颗粒的碳纳米管,这些碳纳米管用特定的表面附着的核糖核酸(RNA)序列元素修饰。通过在石墨基底上生长碳纳米管,在纳米管表面上直接合成金纳米颗粒以及将硫醇化RNA附着到结合的纳米颗粒上来完成多步骤传感器组装。复合纳米材料在传感器开发中的应用保留碳纳米管电行为特性的显着优势,并通过金纳米颗粒,增加了用于其他分析物附着位点的表面积,从而提高了灵敏度。我们成功地证明了具有选择性RNA序列的金纳米颗粒涂层与未涂层的颗粒相比使大肠杆菌的捕获率增加了189%。本研究中详述的传感器形成方法说明了独特的复合结构在开发中的巨大潜力用于快速,灵敏地检测病原体的多阵列电化学传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号