首页> 外文OA文献 >Applications of PCA and SVM-PSO Based Real-Time Face Recognition System
【2h】

Applications of PCA and SVM-PSO Based Real-Time Face Recognition System

机译:基于PCA和SVM-PSO的实时面部识别系统的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper incorporates principal component analysis (PCA) with support vector machine-particle swarm optimization (SVM-PSO) for developing real-time face recognition systems. The integrated scheme aims to adopt the SVM-PSO method to improve the validity of PCA based image recognition systems on dynamically visual perception. The face recognition for most human-robot interaction applications is accomplished by PCA based method because of its dimensionality reduction. However, PCA based systems are only suitable for processing the faces with the same face expressions and/or under the same view directions. Since the facial feature selection process can be considered as a problem of global combinatorial optimization in machine learning, the SVM-PSO is usually used as an optimal classifier of the system. In this paper, the PSO is used to implement a feature selection, and the SVMs serve as fitness functions of the PSO for classification problems. Experimental results demonstrate that the proposed method simplifies features effectively and obtains higher classification accuracy.
机译:本文包括具有支持向量机粒子群优化(SVM-PSO)的主成分分析(PCA),用于开发实时面部识别系统。综合方案旨在采用SVM-PSO方法,以提高基于PCA的动态视觉感知的PCA的图像识别系统的有效性。由于其维度降低,基于PCA的方法完成了对大多数人机交互应用的面部识别。然而,基于PCA的系统仅适用于用相同的面部表达和/或在相同的视图方向下处理面部。由于面部特征选择过程可以被认为是机器学习中全局组合优化的问题,因此SVM-PSO通常用作系统的最佳分类器。在本文中,PSO用于实现特征选择,并且SVMS用作PSO的适应性函数以进行分类问题。实验结果表明,该方法有效简化了特征,并获得了更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号