首页> 外文OA文献 >Exploiting Fine-Grained Subcarrier Information for Device-Free Localization in Wireless Sensor Networks
【2h】

Exploiting Fine-Grained Subcarrier Information for Device-Free Localization in Wireless Sensor Networks

机译:利用无线传感器网络中无设备本地化的细粒度子载波信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Device-free localization (DFL) that aims to localize targets without carrying any electronic devices is addressed as an emerging and promising research topic. DFL techniques estimate the locations of transceiver-free targets by analyzing their shadowing effects on the radio signals that travel through the area of interest. Recently, compressive sensing (CS) theory has been applied in DFL to reduce the number of measurements by exploiting the inherent spatial sparsity of target locations. In this paper, we propose a novel CS-based multi-target DFL method to leverage the frequency diversity of fine-grained subcarrier information. Specifically, we build the dictionaries of multiple channels based on the saddle surface model and formulate the multi-target DFL as a joint sparse recovery problem. To estimate the location vector, an iterative location vector estimation algorithm is developed under the multitask Bayesian compressive sensing (MBCS) framework. Compared with the state-of-the-art CS-based multi-target DFL approaches, simulation results validate the superiority of the proposed algorithm.
机译:无设备定位(DFL)旨在本地化无需携带任何电子设备的目标,作为一个新兴和有前途的研究主题。 DFL技术通过分析穿过感兴趣区域的无线电信号的阴影效应来估计收发器的目标的位置。最近,压缩感测(CS)理论已在DFL中应用,以减少目标位置的固有空间稀疏性来减少测量的数量。在本文中,我们提出了一种基于新型CS的多目标DFL方法,以利用细粒细粒子载波信息的频率分集。具体地,我们基于鞍谱面模型构建多个通道的字典,并将多目标DFL制定为关节稀疏恢复问题。为了估计位置向量,在多任务贝叶斯压缩感测(MBCS)框架下开发了迭代位置矢量估计算法。与最先进的基于CS的多目标DFL方法相比,仿真结果验证了所提出的算法的优越性。

著录项

  • 作者

    Yan Guo; Dongping Yu; Ning Li;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号