首页> 外文OA文献 >Vehicle monitoring under Vehicular Ad-Hoc Networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police
【2h】

Vehicle monitoring under Vehicular Ad-Hoc Networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police

机译:车辆临时网络下的车辆监测(VANET)参数采用巴基斯坦高速公路警察的照明不变相关滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However, in the past enhancement techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.
机译:先前已经开发了空间域最佳权衡的最大平均相关高度(SPOT-MACH)滤波器,它具有优于频域实现的优势,因为它可以局部适应输入图像背景杂波中的空间变化,并针对局部强度变化。使用SPOT-MACH的主要问题是计算量大。但是,在过去,为SPOT-MACH提出了增强技术,以使其执行时间与频域对应的时间相当。本文讨论了一种新颖的方法,该方法将VANET参数与SPOT-MACH结合使用,以最大程度地减少对从巴基斯坦高速公路监视系统获取的大型视频数据集的广泛处理。 VANET参数的使用为我们提供了巴基斯坦高速公路网络上交通流量的估计标准,并且是训练算法的先驱。在这种情况下使用VANET将极大地减少所建议监视系统的计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号