首页> 外文OA文献 >Inertial-Sensor Bias Estimation from Brightness/Depth Images and Based on $SO(3)$-Invariant Integro/Partial Differential Equations on the Unit Sphere
【2h】

Inertial-Sensor Bias Estimation from Brightness/Depth Images and Based on $SO(3)$-Invariant Integro/Partial Differential Equations on the Unit Sphere

机译:从亮度/深度图像的惯性传感器偏差估计,并基于$ SO(3)$ - 单位球体上的$ - 不变积分/部分微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Constant biases associated to measured linear and angular velocities of amoving object can be estimated from measurements of a static scene by embeddedbrightness and depth sensors. We propose here a Lyapunov-based observer takingadvantage of the SO(3)-invariance of the partial differential equationssatisfied by the measured brightness and depth fields. The resulting asymptoticobserver is governed by a non-linear integro/partial differential system wherethe two independent scalar variables indexing the pixels live on the unitsphere of the 3D Euclidian space. The observer design and analysis are stronglysimplified by coordinate-free differential calculus on the unit sphere equippedwith its natural Riemannian structure. The observer convergence is investigatedunder C^1 regularity assumptions on the object motion and its scene. It relieson Ascoli-Arzela theorem and pre-compactness of the observer trajectories. Itis proved that the estimated biases converge towards the true ones, if and onlyif, the scene admits no cylindrical symmetry. The observer design can beadapted to realistic sensors where brightness and depth data are only availableon a subset of the unit sphere. Preliminary simulations with syntheticbrightness and depth images (corrupted by noise around 10%) indicate that suchLyapunov-based observers should be robust and convergent for much weakerregularity assumptions.
机译:可以通过嵌入的亮度和深度传感器根据静态场景的测量值来估计与移动物体的测量线速度和角速度相关的恒定偏差。我们在这里提出一个基于Lyapunov的观测器,它利用了偏微分方程的SO(3)-不变性,该偏微分方程由测得的亮度和深度场满足。生成的渐近观测器由非线性整数/偏微分系统控制,在该系统中索引像素的两个独立标量变量生活在3D Euclidian空间的单位球面上。观察者的设计和分析通过配备自然Riemannian结构的单位球面上的无坐标微分运算而大大简化。在物体运动及其场景的C ^ 1正则性假设下研究了观测者的收敛性。它依赖于Ascoli-Arzela定理和观察者轨迹的预紧性。证明了,当且仅当场景不存在圆柱对称性时,估计的偏差才趋向于真实偏差。观察者的设计可以适应现实的传感器,其中亮度和深度数据仅在单位球体的子集上可用。带有合成亮度和深度图像(被10%左右的噪声破坏)的初步模拟表明,这种基于Lyapunov的观测器对于较弱的正则性假设应具有鲁棒性和收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号