首页> 外文OA文献 >Green's Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument
【2h】

Green's Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument

机译:绿色的函数和周期性解决方案的弹簧质量系统,其中力在功能上取决于分段常数论证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, damped spring-mass systems with generalized piecewise constant argument and with functional dependence on generalized piecewise constant argument are considered. These spring-mass systems have piecewise constant forces of the forms $Ax(gamma(t))$ and $Ax(gamma(t))+h(t,x_{t},x_{gamma(t)})$, respectively. These spring-mass systems are examined without reducing them into discrete equations. While doing this examination, we make use of the results which have been obtained for differential equations with functional dependence on generalized piecewise constant argument in cite{2}. Sufficient conditions for the existence and uniqueness of solutions of the spring-mass system with functional dependence on generalized piecewise constant argument are given. The periodic solution of the spring-mass system which has functional force is created with the help of the Green's function, and its uniqueness is proved. The obtained theoretical results are illustrated by an example. This illustration shows that the damped spring-mass systems with functional dependence on generalized piecewise constant argument with proper parameters has a unique periodic solution which can be expressed by Green's function.
机译:在本文中,考虑了具有概括分段常数参数的阻尼弹簧质量和对广义分段恒定参数的功能依赖性。这些春细系统具有逐分恒定的形式$ AX( Gamma(T))$和$ AX( Gamma(T))+ H(t,x_ {t},x _ { gamma(t)} )$分别。检查这些弹簧质量系统,而不将它们还原成离散式。在进行这次检查的同时,我们利用了用于微分方程所获得的结果,该方程具有功能依赖性对 Cite {2}中的广义分段常量参数的功能依赖性。给出了具有功能依赖性的春细系统的存在和唯一性的充分条件,具有对广义分段恒定参数的功能依赖性。在绿色的功能的帮助下产生具有功能力的弹簧质量系统的周期性溶液,并且证明了其唯一性。通过示例说明所获得的理论结果。该图示表明,具有功能依赖性的阻尼弹簧质量系统与适当参数的广义分段常数参数具有独特的周期性解决方案,其可以由绿色的功能表示。

著录项

  • 作者

    Duygu ARUĞASLAN; Nur CENGİZ;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng;tur
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号