首页> 外文OA文献 >MALINI (Machine Learning in NeuroImaging): A MATLAB toolbox for aiding clinical diagnostics using resting-state fMRI data
【2h】

MALINI (Machine Learning in NeuroImaging): A MATLAB toolbox for aiding clinical diagnostics using resting-state fMRI data

机译:马里尼(神经影像机中的机器学习):使用休息状态FMRI数据辅助临床诊断的MATLAB工具箱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) has been extensively used for diagnostic classification because it does not require task compliance and is easier to pool data from multiple imaging sites, thereby increasing the sample size. A MATLAB-based toolbox called Machine Learning in NeuroImaging (MALINI) for feature extraction and disease classification is presented. The MALINI toolbox extracts functional and effective connectivity features from preprocessed rs-fMRI data and performs classification between healthy and disease groups using any of 18 popular and widely used machine learning algorithms that are based on diverse principles. A consensus classifier combining the power of multiple classifiers is also presented. The utility of the toolbox is illustrated by accompanying data consisting of resting-state functional connectivity features from healthy controls and subjects with various brain-based disorders: autism spectrum disorder from autism brain imaging data exchange (ABIDE), Alzheimer's disease and mild cognitive impairment from Alzheimer's disease neuroimaging initiative (ADNI), attention deficit hyperactivity disorder from ADHD-200, and post-traumatic stress disorder and post-concussion syndrome acquired in-house. Results of classification performed on the above datasets can be obtained from the main article titled “Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets” [1]. The data was divided into homogeneous and heterogeneous splits, such that 80% could be used for training, model building and cross-validation, while the remaining 20% of the data could be used as a hold-out independent test data for replication of the classification performance, to ensure the robustness of the classifiers to population variance in image acquisition site and age of the sample. Keywords: Resting-state functional MRI, Supervised machine learning, Diagnostic classification, Functional connectivity, Autism, ADHD, Alzheimer's disease, PTSD
机译:休息状态功能磁共振成像(RS-FMRI)已广泛用于诊断分类,因为它不需要任务合规性,并且更容易从多个成像站点池数据,从而增加样本大小。提出了一种基于Matlab的工具箱,称为机器学习(Malini)用于特征提取和疾病分类。 Malini工具箱从预处理的RS-FMRI数据提取功能和有效的连接特征,并使用基于各种原则的18个流行的和广泛使用的机器学习算法中的任何一个进行健康和疾病组之间进行分类。还呈现了组合多分类器的功率的共识分类器。工具箱的效用是通过从健康对照和受试者的休息状态功能连接特征组成的数据来说明,具有各种基于脑的疾病:自闭症脑成像数据交换(遵守),阿尔茨海默病和轻度认知障碍的自闭症谱系障碍阿尔茨海默病的神经影像促进潜力(ADNI),来自ADHD-200的注意力缺陷多动障碍,以及创伤后应激障碍和内部脑卒中后综合征。对上述数据集进行的分类结果可以从标题为“来自大型神经影像数据集的诊断分类的监督机器学习”的主要文章获得[1]。数据分为均匀和异构的分裂,使得80%可用于培训,模型建设和交叉验证,而剩余的20%的数据可以用作复制的持有独立的测试数据,以便复制分类性能,以确保分类器对图像采集现场的群体方差和样本年龄的稳健性。关键词:休息状态功能MRI,监督机器学习,诊断分类,功能性连通性,自闭症,ADHD,Alzheimer疾病,PTSD

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号