In this paper, we consider the problem about finding out perfect powers in analternating sum of consecutive cubes. More precisely, we completely solve theDiophantine equation $(x+1)^3 - (x+2)^3 + cdots - (x + 2d)^3 + (x + 2d + 1)^3= z^p$, where $p$ is prime and $x,d,z$ are integers with $1 leq d leq 50$.
展开▼
机译:在本文中,我们考虑了在分析连续立方体的分析之和中找到完美权力的问题。更确切地说,我们完全解决了杀药线方程$(x + 1)^ 3 - (x + 2)^ 3 + cdots - (x + 2d)^ 3 +(x + 2d + 1)^ 3 = z ^ p $ ,其中$ p $是prime和$ x,d,z $是一个满$ 1 leq d leq 50 $的整数。
展开▼