首页> 外文OA文献 >The efficiency comparison of solvers for sparse linear algebraic equations systems based on the BiCGStab and FGMRES methods
【2h】

The efficiency comparison of solvers for sparse linear algebraic equations systems based on the BiCGStab and FGMRES methods

机译:基于BICGSTAB和FGMRES方法的稀疏线性代数方程系统求解器的效率比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The efficiency comparison of solvers for sparse linear algebraic equations systems based on one of the fastest iterative methods, the BiCGStab method (bi-conjugate gradient method with stabilization), and the FGMRES method (flexible method of generalized minimal residuals) is presented in this study. Estimates of computational cost per one iteration are presented for the considered methods. The condition imposed on the Krylov subspace dimensionality in the FGMRES is obtained. When this condition is fulfilled, the computational cost per one iteration of the FGMRES method is less than the computational cost per one iteration of the BiCGStab. In addition, the FGMRES modification, which allows to stop the algorithm before the next restart in case of achieving the specified accuracy, is presented. Solvers on the basis of presented the BiCGStab and FGMRES methods algorithms including ILU and multigrid preconditioning are developed on the C++ language for sparse linear algebraic equations systems. The efficiency comparison of developed solvers was carried out on the difference analogs of the Helmholtz and Poisson equations. The systems were taken from the test problem about simulation of the flow around a circular profile, which makes forced transverse oscillations. The difference scheme for the problem solution is constructed by the LS-STAG method (immersed boundaries method with level-set functions). Computational experiments showed that the FGMRES demonstrates a higher convergence rate on problems of this class in comparison with the BiCGStab. The FGMRES usage allowed to reduce the computation time by more than 6.5 times without preconditioning and more than 3 times with preconditioning. The implementation of the modified FGMRES algorithm was also compared with a similar solver from the Intel® Math Kernel Library. Computational experiments showed that the developed FGMRES implementation allowed to obtain acceleration in comparison with Intel® MKL by 3.4 times without preconditioning and by 1.4 times with ILU-preconditioning.
机译:求解器的基于最快迭代方法中的一种稀疏线性代数方程系统的效率比较,BICGSTAB方法(双共轭梯度方法用稳定化),和FGMRES方法(广义最小残差灵活的方法)在本研究中,提出。计算成本的估算,每一次迭代都在考虑的方法。获得在FGMRES强加于Krylov子空间维度的条件。当这个条件被满足,每FGMRES方法的一个迭代的计算成本低于每BICGSTAB的一个迭代的计算成本。此外,FGMRES修改,允许停在下次重启之前的算法实现准确度指标的情况下,提出了。的呈现的BICGSTAB和FGMRES方法算法,包括ILU和多重网格预处理的基础上求解器对稀疏线性代数方程系统中的C ++语言开发的。发达解算器的效率比较是在亥姆霍兹和泊松方程的差类似物进行。该系统从测试问题而采取的关于周围的圆形轮廓,这使得强制横向振荡的流动模拟。对于该问题的解决方案的差异方案由LS-STAG方法(浸渍边界方法与水平集函数)构成。计算实验表明,FGMRES证明这一类的问题,较高的收敛速度与BICGSTAB比较。该FGMRES允许使用超过6.5倍,以减少计算时间,而不预处理与预处理的3倍以上。修改后的FGMRES算法的实现也与来自英特尔®数学核心函数库类似的求解器进行比较。计算实验表明,发达FGMRES允许执行3.4倍无预处理,并通过与ILU-预处理1.4倍,以获得与英特尔MKL相比加速。

著录项

  • 作者

    I. Marchevsky; V. Puzikova;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng;rus
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号