The main aim of this article is to construct a canonical $F$-isocrystal ${fH}(A)_K$ for an abelian scheme $A$ over a $p$-adic complete discrete valuationring of perfect residue field. This $F$-isocrystal ${f H}(A)_K$ comes with afiltration and admits a natural map to the usual Hodge sequence of $A$. Eventhough ${f H}(A)_K$ admits a map to the crystalline cohomology of $A$, the$F$-structure on ${f H}(A)_K$ is fundamentally distinct from the one on thecrystalline cohomology. When $A$ is an elliptic curve, we further show that${f H}(A)$ itself is an $F$-crystal and that implies a strengthened versionof Buium's result on differential characters.
展开▼
机译:本文的主要目标是构建一个规范$ f $ -isocrystal $ { bfh}(a)_k $ for a abelian计划$ a $ a $ a超过完美的残留场的每次$ p $ theat全离散的律值。此$ f $ -isocrystal $ { bf h}(a)_k $附带在上方并承认自然地图到$ a $的常规霍奇序列。 Femenhough $ { bf h}(a)_k $概述了$ a $的晶体正交学的地图,$ f $ -structure on $ { bf h}(a)_k $基本上不同于thecrystalline同步学。当$ a $是一个椭圆曲线时,我们进一步显示$ { bf h}(a)$本身是$ f $ -crystal,这意味着Buium在差分字符上得到了增强的versionof。
展开▼