首页> 外文OA文献 >Towards structured sharing of raw and derived neuroimaging data across existing resources
【2h】

Towards structured sharing of raw and derived neuroimaging data across existing resources

机译:朝着现有资源划分的原始和派生神经影像数据的结构分享

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data sharing efforts increasingly contribute to the acceleration ofscientific discovery. Neuroimaging data is accumulating in distributeddomain-specific databases and there is currently no integrated access mechanismnor an accepted format for the critically important meta-data that is necessaryfor making use of the combined, available neuroimaging data. In thismanuscript, we present work from the Derived Data Working Group, an open-accessgroup sponsored by the Biomedical Informatics Research Network (BIRN) and theInternational Neuroimaging Coordinating Facility (INCF) focused on practicaltools for distributed access to neuroimaging data. The working group developsmodels and tools facilitating the structured interchange of neuroimagingmeta-data and is making progress towards a unified set of tools for such dataand meta-data exchange. We report on the key components required for integratedaccess to raw and derived neuroimaging data as well as associated meta-data andprovenance across neuroimaging resources. The components include (1) astructured terminology that provides semantic context to data, (2) a formaldata model for neuroimaging with robust tracking of data provenance, (3) a webservice-based application programming interface (API) that provides aconsistent mechanism to access and query the data model, and (4) a provenancelibrary that can be used for the extraction of provenance data by imageanalysts and imaging software developers. We believe that the framework and setof tools outlined in this manuscript have great potential for solving many ofthe issues the neuroimaging community faces when sharing raw and derivedneuroimaging data across the various existing database systems for the purposeof accelerating scientific discovery.
机译:数据分享努力越来越有助于加速科学发现。 Neuroimaging数据在分布式域的数据库中累积,目前没有集成的访问机制网络,用于批判性重要的元数据,这是利用组合的可用神经影像数据所必需的。在这个曼德斯特版中,我们从派生数据工作组中展示了工作组,由生物医学信息学研究网络(Birn)和International神经影像协调设施(Incf)专注于用于神经影像数据的分布式访问的实用工具(Incf)。工作组开发型和工具促进了神经内逻辑量数据的结构化交换,并正在进行统一的一组工具,用于这种数据和元数据交换。我们报告综合处理所需的关键组件,并源于神经影像资源的相关元数据和提出的元数据。这些组件包括(1)Arructurece术语,其为数据提供语义上下文,(2)具有鲁棒追踪数据出处的神经影像模型,(3)基于WebService的应用程序编程接口(API),提供了访问和查询数据模型,(4)可以用于通过ImageAnalalysts和成像软件开发人员提取出差数据的验证精灵。我们认为,本手稿中概述的框架和集合工具具有巨大的潜力,可以解决神经影像社区在各种现有数据库系统中共享原始和派世病社区的问题,以加速科学发现的目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号