首页> 外文OA文献 >Steady-state numerical modeling of size effects in micron scale wire drawing
【2h】

Steady-state numerical modeling of size effects in micron scale wire drawing

机译:微米刻度线尺寸尺寸效应稳态数值模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wire drawing processes at the micron scale have received increased interest as micro wires are increasingly required in electrical components. It is well-established that size effects due to large strain gradient effects play an important role at this scale and the present study aims to quantify these effects for the wire drawing process. Focus will be on investigating the impact of size effects on the most favourable tool geometry (in terms of minimizing the drawing force) for various conditions between the wire/tool interface. The numerical analysis is based on a steady-state framework that enables convergence without dealing with the transient regime, but still fully accounts for the history dependence as-well as the elastic unloading. Thus, it forms the basis for a comprehensive parameter study. During the deformation process in wire drawing, large plastic strain gradients evolve in the contact region. This creates a need for a higher order plasticity theory to accurately predict the material behaviour across the multiple scales involved. The present study reveals that the contribution from an energetic (recoverable) length parameter is limited, while the corresponding dissipative contribution dominates and tends to shift the drawing force to a higher level. As a direct consequence, the strain gradient hardening effect reduces the most favourable tool angle of a sharp tool with up to 50% (in terms of the required drawing force), whereas a circular shaped tool is proven less sensitive to scaling effects. By considering the contact force profile between tool and material it becomes clear that the strain gradients have a smoothing effect and both the magnitude and position of the peak pressure are affected significantly. A round tool is found to reduce the peak force, while the location of the peak is found to move from outlet to inlet depending on the tool geometry.
机译:微米刻度的电线拉伸过程已经获得了增加的兴趣,因为在电气部件中越来越需要微线。众所周知,由于大规模的梯度效应引起的大小效应在这种规模上发挥着重要作用,目前的研究旨在量化这些效果对电线拉伸过程。焦点将在调查尺寸效应对最有利的工具几何形状的影响(以最小化绘制力最小化)在线/工具界面之间的各种条件。数值分析基于稳态框架,可以在不处理瞬态制度的情况下实现收敛,但仍然完全占据历史依赖性的概率,以及作为弹性卸载。因此,它构成了综合参数研究的基础。在牵引过程中的变形过程中,大塑性应变梯度在接触区域中发展。这需要更高阶可塑性理论,以准确地预测涉及多个尺度的材料行为。本研究表明,来自能量(可恢复的)长度参数的贡献是有限的,而相应的耗散贡献主要占主导地位并倾向于将拉伸力移至更高水平。作为直接后果,应变梯度硬化效果降低了锋利工具的最有利的工具角度,该尖锐工具可达50%(就所需的拉伸力而言),而圆形工具被证明对缩放效果不太敏感。通过考虑工具和材料之间的接触力曲线,明显使得应变梯度具有平滑效果,并且峰值压力的大小和位置都受到显着影响。发现圆形工具减小峰值力,而发现峰的位置根据刀具几何形状从出口到入口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号