首页> 外文OA文献 >Identifying patients at risk for severe exacerbations of asthma: development and external validation of a multivariable prediction model
【2h】

Identifying patients at risk for severe exacerbations of asthma: development and external validation of a multivariable prediction model

机译:鉴定患有哮喘严重恶化的风险的患者:多变量预测模型的开发和外部验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Preventing exacerbations of asthma is a major goal in current guidelines. We aimed to develop a prediction model enabling practitioners to identify patients at risk of severe exacerbations who could potentially benefit from a change in management. We used data from a 12-month primary care pragmatic trial; candidate predictors were identified from GINA 2014 and selected with a multivariable bootstrapping procedure. Three models were constructed, based on: (1) history, (2) history+spirometry and (3) history+spirometry+FeNO. Final models were corrected for overoptimism by shrinking the regression coefficients; predictive performance was assessed by the area under the receiver operating characteristic curve (AUROC) and Hosmer-Lemeshow test. Models were externally validated in a data set including patients with severe asthma (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes). 80/611 (13.1%) participants experienced ≥1 severe exacerbation. Five predictors (Asthma Control Questionnaire score, current smoking, chronic sinusitis, previous hospital admission for asthma and ≥1 severe exacerbation in the previous year) were retained in the history model (AUROC 0.77 (95% CI 0.75 to 0.80); Hosmer-Lemeshow p value 0.35). Adding spirometry and FeNO subsequently improved discrimination slightly (AUROC 0.79 (95% CI 0.77 to 0.81) and 0.80 (95% CI 0.78 to 0.81), respectively). External validation yielded AUROCs of 0.72 (95% CI 0.70 to 0.73; 71 to 0.74 and 0.71 to 0.73) for the three models, respectively; calibration was best for the spirometry model. A simple history-based model extended with spirometry identifies patients who are prone to asthma exacerbations. The additional value of FeNO is modest. These models merit an implementation study in clinical practice to assess their utility. NTR 1756
机译:防止哮喘的恶化是当前指南的主要目标。我们旨在开发一种预测模型,使从业者能够识别可能导致严重恶化风险的患者,他们可能会受益于管理层的变化。我们使用了从12个月的初级保健务实审判中的数据;候选预测因子是从Gina 2014识别的,并用多变量的引导程序选择。基于:(1)历史,(2)历史+ Spirometry和(3)历史+肺活量+ FENO,建造了三种模型。通过缩小回归系数来纠正最终模型的过透明模型;通过接收器操作特性曲线(Auroc)和Hosmer-Lemeshow测试的区域评估预测性能。模型在包括严重哮喘患者的数据集中进行外部验证(预测呼吸道疾病结果中的非偏见生物标志物)。 80/611(13.1%)参与者经历了≥1严重加剧。五次预测因子(哮喘控制问卷评分,目前吸烟,慢性鼻窦炎,前一年中的哮喘和≥1≥1严重加剧)保留在历史模型(Auroc 0.77(95%CI 0.75至0.80); Hosmer-Lemeshow P值0.35)。增加肺活量测定和FENO随后略微改善鉴别(AuCOC 0.79(95%CI 0.77至0.81)和0.80(95%CI 0.78至0.81))。外部验证分别产生0.72(95%CI 0.70至0.73; 71至0.74和0.71至0.71至0.71至0.71至0.71至0.71至0.71至0.71至0.71至0.71至0.71至0.71〜0.73);校准最适合肺活量测定模型。一种简单的基于历史的模型,延长了肺活量测定仪识别患者容易发生哮喘恶化的患者。 FENO的额外价值是适度的。这些模型在临床实践中进行了实施研究以评估其效用。 NTR 1756.

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号