首页> 外文OA文献 >Computational Study on Hysteresis of Ion Channels: Multiple Solutions to Steady-State Poisson-Nernst-Planck Equations
【2h】

Computational Study on Hysteresis of Ion Channels: Multiple Solutions to Steady-State Poisson-Nernst-Planck Equations

机译:离子通道滞后的计算研究:稳态泊松 - 内部普通普通方程的多解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The steady-state Poisson-Nernst-Planck (ssPNP) equations are an effectivemodel for the description of ionic transport in ion channels. It is observedthat an ion channel exhibits voltage-dependent switching between open andclosed states. Different conductance states of a channel imply that the ssPNPequations probably have multiple solutions with different level of currents. Wepropose numerical approaches to study multiple solutions to the ssPNP equationswith multiple ionic species. To find complete current-voltage (I-V ) andcurrent-concentration (I-C) curves, we reformulate the ssPNP equations intofour different boundary value problems (BVPs). Numerical continuationapproaches are developed to provide good initial guesses for iterativelysolving algebraic equations resulting from discretization. Numericalcontinuations on V , I, and boundary concentrations result in S-shaped anddouble S-shaped (I-V and I-C) curves for the ssPNP equations with multiplespecies of ions. There are five solutions to the ssPNP equations with fiveionic species, when an applied voltage is given in certain intervals.Remarkably, the current through ion channels responds hysteretically to varyingapplied voltages and boundary concentrations, showing a memory effect. Inaddition, we propose a useful computational approach to locate turning pointsof an I-V curve. With obtained locations, we are able to determine criticalthreshold values for hysteresis to occur and the interval for V in which thessPNP equations have multiple solutions. Our numerical results indicate thatthe developed numerical approaches have a promising potential in studyinghysteretic conductance states of ion channels.
机译:稳态Poisson-nernster-Planck(SSPNP)方程是用于离子通道中的离子传输的实施的有效型。观察到离子通道在开放式谐波状态之间表现出电压依赖性切换。通道的不同电导状态意味着SSPNPequations可能具有多种具有不同电流水平的解决方案。多种离子物种研究SSPNP方程的多种解决方案的数字方法。找到完整的电流 - 电压(I-V)和浓度(I-C)曲线,我们重构SSPNP方程IntoFour不同的边值问题(BVP)。开发了数值延续的人,以提供因离散化而导致的代数等方程来提供良好的初始猜测。 V,I和边界浓度的数值切断导致具有多重离子的SSPNP方程的S形和机形状(I-V和I-C)曲线。当以某些间隔给出施加的电压时,SSPNP方程有五种解决方案。施加电压以某些间隔给出。通过离子通道的电流符合变化的电压和边界浓度,可以响应变化的电压和边界浓度,显示内存效果。 inddition,我们提出了一种有用的计算方法来定位一个I-V曲线的转折点。通过获得的位置,我们能够确定要发生滞后的关键阈值,并且VOSPNP方程具有多种解决方案的V的间隔。我们的数值结果表明,开发的数值方法具有离子通道的研究中的神秘电导状态的有希望的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号