首页> 外文OA文献 >Toward AUV survey design for optimal coverage and localization using the Cramer Rao Lower Bound
【2h】

Toward AUV survey design for optimal coverage and localization using the Cramer Rao Lower Bound

机译:对AUV调查设计,以获得最佳覆盖和本地化的利用克拉姆RAO下限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper discusses an approach to using the Cramer Rao Lower Bound (CRLB) as a trajectory design tool for autonomous underwater vehicle (AUV) visual navigation. We begin with a discussion of Fisher Information as a measure of the lower bound of uncertainty in a simultaneous localization and mapping (SLAM) pose-graph. Treating the AUV trajectory as an non-random parameter, the Fisher information is calculated from the CRLB derivation, and depends only upon path geometry and sensor noise. The effect of the trajectory design parameters are evaluated by calculating the CRLB with different parameter sets. Next, optimal survey parameters are selected to improve the overall coverage rate while maintaining an acceptable level of localization precision for a fixed number of pose samples. The utility of the CRLB as a design tool in pre-planning an AUV survey is demonstrated using a synthetic data set for a boustrophedon survey. In this demonstration, we compare the CRLB of the improved survey plan with that of an actual previous hull-inspection survey plan of the USS Saratoga. Survey optimality is evaluated by measuring the overall coverage area and CRLB localization precision for a fixed number of nodes in the graph. We also examine how to exploit prior knowledge of environmental feature distribution in the survey plan.
机译:本文讨论了使用Cramer Rao下限(CRLB)作为自主水下车辆(AUV)视觉导航的轨迹设计工具的方法。我们从Fisher信息的讨论开始作为同时定位和映射(SLAM)姿势图中不确定性下限的衡量标准。将AUV轨迹视为非随机参数,Fisher信息由CRLB推导计算,并且仅取决于路径几何和传感器噪声。通过用不同参数集计算CRLB来评估轨迹设计参数的效果。接下来,选择最佳调查参数以提高整体覆盖率,同时保持固定数量的姿势样本的可接受的定位精度水平。 CRLB作为预先规划AUV调查的设计工具的实用性使用Boustrophedon调查的合成数据进行了说明。在这一示范中,我们将改进调查计划的CRLB与美国萨拉托加的实际船体检查调查计划进行了比较。通过测量图表中的固定数量的节点的整体覆盖范围和CRLB定位精度来评估调查最优性。我们还研究了如何利用调查计划中的环境特征分配的先前知识。

著录项

  • 作者

    Ayoung Kim; Ryan M. Eustice;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号