首页> 外文OA文献 >Neural Models for Imputation of Missing Ozone Data in Air-Quality Datasets
【2h】

Neural Models for Imputation of Missing Ozone Data in Air-Quality Datasets

机译:用于空气质量数据集中缺失臭氧数据的神经模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ozone is one of the pollutants with most negative effects on human health and in general on the biosphere. Many data-acquisition networks collect data about ozone values in both urban and background areas. Usually, these data are incomplete or corrupt and the imputation of the missing values is a priority in order to obtain complete datasets, solving the uncertainty and vagueness of existing problems to manage complexity. In the present paper, multiple-regression techniques and Artificial Neural Network models are applied to approximate the absent ozone values from five explanatory variables containing air-quality information. To compare the different imputation methods, real-life data from six data-acquisition stations from the region of Castilla y León (Spain) are gathered in different ways and then analyzed. The results obtained in the estimation of the missing values by applying these techniques and models are compared, analyzing the possible causes of the given response.
机译:臭氧是污染物之一,对人类健康和一般对生物圈的影响。许多数据采集网络收集有关城市和背景区域的臭氧值的数据。通常,这些数据不完整或损坏,缺失值的归纳是优先级,以便获取完整的数据集,解决现有问题的不确定性和模糊性以管理复杂性。在本文中,应用多元回归技术和人工神经网络模型以从包含空气质量信息的五个解释性变量近似非臭氧值。为了比较不同的估算方法,来自来自Castilla YLeón(西班牙)区域的六个数据采集站的现实生活数据以不同的方式聚集,然后分析。通过应用这些技术和模型来估计缺失值的估计结果,分析给定响应的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号