首页> 外文OA文献 >Hyperspectral Image Classification for Land Cover Based on an Improved Interval Type-II Fuzzy C-Means Approach
【2h】

Hyperspectral Image Classification for Land Cover Based on an Improved Interval Type-II Fuzzy C-Means Approach

机译:基于改进的间隔II型模糊C型方法的陆地覆盖的高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty.
机译:几个研究已经检查了II型模糊集的高光谱遥感图像分类。本文使用改进的间隔Type-II模糊C-Meance(IT2FCM *)方法,解决了基于高光谱遥感技术的图像分类。在本研究中,与其他传统的模糊C型均值的方法相比,IT2FCM *算法考虑了间隔数和光谱不确定性的排名。使用FCM,IT2FCM和所提出的IT2FCM *算法基于超细数据集的分类结果表明,IT2FCM *方法根据聚类精度播放最佳性能。在本文中,为了验证和证明IT2FCM *的可分离性,采用了四种I型模糊有效性指标,并进行了在FCM和IT2FCM方法中应用的这些模糊有效性指标的比较分析。这四个索引也应用于不同的空间和光谱分辨率数据集,以分析光谱和空间缩放因子对FCM,IT2FCM和IT2FCM *方法的可分离性的影响。来自高光谱数据集的这些有效性索引的结果表明,改进的IT2FCM *算法通常是这三种算法中的最佳值。结果表明,由于其处理高光谱不确定性的能力,IT2FCM *在高光谱遥感图像分类中表现出良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号