首页> 外文OA文献 >The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region
【2h】

The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

机译:巴尔的摩-华盛顿特区的气溶胶载量,组成和吸水率对气溶胶消光变异性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to utilize satellite-based aerosol measurements for thedetermination of air quality, the relationship between aerosol opticalproperties (wavelength-dependent, column-integrated extinction measured bysatellites) and mass measurements of aerosol loading (PM used for airquality monitoring) must be understood. This connection varies with manyfactors including those specific to the aerosol type – such as composition,size, and hygroscopicity – and to the surrounding atmosphere, such astemperature, relative humidity (RH), and altitude, all of which can varyspatially and temporally. During the DISCOVER-AQ (Deriving Information onSurface conditions from Column and Vertically Resolved Observations Relevantto Air Quality) project, extensive in situ atmospheric profiling in theBaltimore, MD–Washington, D.C. region was performed during 14flights in July 2011. Identical flight plans and profile locations throughoutthe project provide meaningful statistics for determining the variability inand correlations between aerosol loading, composition, optical properties, andmeteorological conditions.Measured water-soluble aerosol mass was composed primarily of ammoniumsulfate (campaign average of 32 %) and organics (57 %). A distinctdifference in composition was observed, with high-loading days having aproportionally larger percentage of sulfate due to transport from the OhioRiver Valley. This composition shift caused a change in the aerosolwater-uptake potential (hygroscopicity) such that higher relativecontributions of inorganics increased the bulk aerosol hygroscopicity. Thesedays also tended to have higher relative humidity, causing an increase in thewater content of the aerosol. Conversely, low-aerosol-loading days had lowersulfate and higher black carbon contributions, causing lower single-scatteringalbedos (SSAs). The average black carbon concentrations were240 ng m in the lowest 1 km, decreasing to 35 ng m in thefree troposphere (above 3 km).Routine airborne sampling over six locations was used to evaluate therelative contributions of aerosol loading, composition, and relative humidity(the amount of water available for uptake onto aerosols) to variability inmixed-layer aerosol extinction. Aerosol loading (dry extinction) was found tobe the predominant source, accounting for 88 % on average of the measuredspatial variability in ambient extinction, with lesser contributions fromvariability in relative humidity (10 %) and aerosol composition(1.3 %). On average, changes in aerosol loading also caused 82 % ofthe diurnal variability in ambient aerosol extinction. However on days withrelative humidity above 60 %, variability in RH was found to cause up to62 % of the spatial variability and 95 % of the diurnal variabilityin ambient extinction.This work shows that extinction is driven to first order by aerosol massloadings; however, humidity-driven hydration effects play an importantsecondary role. This motivates combined satellite–modeling assimilationproducts that are able to capture these components of the aerosol optical depth (AOD)–PMlink. Conversely, aerosol hygroscopicity and SSA play a minor role in drivingvariations both spatially and throughout the day in aerosol extinction andtherefore AOD. However, changes in aerosol hygroscopicity from day to daywere large and could cause a bias of up to 27 % if not accounted for.Thus it appears that a single daily measurement of aerosol hygroscopicity canbe used for AOD-to-PM conversions over the study region (on the orderof 1400 km). This is complimentary to the results of Chu etal. (2015), who determined that the aerosol vertical distribution from "a single lidar isfeasible to cover the range of 100 km" in the same region.
机译:为了利用基于卫星的气溶胶测量来确定空气质量,必须理解气溶胶光学特性(与波长相关的,由卫星测量的柱积分消光)和气溶胶负载质量测量(用于空气质量监测的PM)之间的关系。这种联系随多种因素而变化,包括特定于气溶胶类型的因素,例如成分,大小和吸湿性,以及周围大气的因素,例如温度,相对湿度(RH)和海拔高度,所有这些因素在空间和时间上都会变化。在DISCOVER-AQ(从与空气质量相关的垂直和垂直分辨观测值得出的地面状况信息)项目期间,2011年7月的14次航班在马里兰州巴尔的摩的华盛顿地区进行了广泛的原位大气剖面分析。相同的飞行计划和剖面位置整个项目为确定气溶胶载量,组成,光学性质和气象条件之间的变异性和相关性提供了有意义的统计数据。所测量的水溶性气溶胶质量主要由硫酸铵(运动场平均值为32%)和有机物(57%)组成。观察到了组成上的明显差异,由于从俄亥俄河谷的运输,高负载日的硫酸盐百分比成比例更大。这种成分变化导致气溶胶吸水势(吸湿性)发生变化,从而使较高的无机物相对含量增加了整体气溶胶的吸湿性。这些天也趋向于具有较高的相对湿度,从而导致气雾剂的水含量增加。相反,低气溶胶加载天具有较低的硫酸盐含量和较高的黑碳贡献,从而导致较低的单散射反照率(SSA)。在最低的1km内,平均黑碳浓度为240μg/ m,在对流层中(3μkm以上)降低为35μg/ m。使用常规空气采样法在六个位置对气溶胶负荷,组成和相对湿度进行了相对贡献( (可吸收到气溶胶中的水量)随混合层气溶胶消光的变化而变化。发现气溶胶负荷(干熄灭)是主要来源,平均占环境灭绝的空间变异性的88%,相对湿度(10 %%)和气溶胶组成的变化(1.3 %%)的贡献较小。平均而言,气溶胶载量的变化还引起周围气溶胶绝灭昼夜变化的82%。然而,在相对湿度高于60%的日子里,RH的变化导致环境灭绝引起的空间变异高达62%,而昼夜变化则引起高达95%的昼夜变化。然而,湿度驱动的水合作用起着重要的次要作用。这激发了组合的卫星模拟同化产品,这些产品能够捕获气溶胶光学深度(AOD)-PMlink的这些成分。相反,气溶胶的吸湿性和SSA在气溶胶消光以及因此而导致的AOD中在驱动空间和全天变化中起次要作用。但是,每天的气溶胶吸湿性变化很大,如果不加以考虑,可能会引起高达27%的偏差,因此似乎可以在研究区域内使用一次每日的气溶胶吸湿性测量来进行AOD到PM的转换。 (大约1400 km)。这是对Chu etal的结果的补充。 (2015年),他确定同一地区“单个激光雷达覆盖100 km范围内”的气溶胶​​垂直分布是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号