首页> 外文OA文献 >Analysis of functional groups in atmospheric aerosols by infraredspectroscopy: sparse methods for statistical selection of relevant absorption bands
【2h】

Analysis of functional groups in atmospheric aerosols by infraredspectroscopy: sparse methods for statistical selection of relevant absorption bands

机译:红外分析大气气溶胶中的官能团光谱:稀疏方法统计选择相关吸收带

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various vibrational modes present in molecular mixtures of laboratory andatmospheric aerosols give rise to complex Fourier transform infrared (FT-IR)absorption spectra. Such spectra can be chemically informative, but they oftenrequire sophisticated algorithms for quantitative characterization of aerosolcomposition. Naïve statistical calibration models developed forquantification employ the full suite of wavenumbers available from a set ofspectra, leading to loss of mechanistic interpretation between chemicalcomposition and the resulting changes in absorption patterns that underpintheir predictive capability. Using sparse representations of the same set ofspectra, alternative calibration models can be built in which only a selectgroup of absorption bands are used to make quantitative prediction of variousaerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecularstructure. In this work, we present an evaluation of four algorithms forachieving sparsity in FT-IR spectroscopy calibration models. Sparsecalibration models exclude unnecessary wavenumbers from infrared spectraduring the model building process, permitting identification and evaluationof the most relevant vibrational modes of molecules in complex aerosolmixtures required to make quantitative predictions of various measures ofaerosol composition. We study two types of models: one which predicts alcoholCOH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG)abundances in ambient samples based on laboratory calibration standards andanother which predicts thermal optical reflectance (TOR) organic carbon (OC)and elemental carbon (EC) mass in new ambient samples by direct calibrationof infrared spectra to a set of ambient samples reserved for calibration. Wedescribe the development and selection of each calibration model andevaluate the effect of sparsity on prediction performance. Finally, weascribe interpretation to absorption bands used in quantitative prediction ofFGs and TOR OC and EC concentrations.
机译:实验室和大气气溶胶分子混合物中存在的各种振动模式会产生复杂的傅立叶变换红外(FT-IR)吸收光谱。这样的光谱可以提供化学信息,但是它们通常需要复杂的算法来对气溶胶成分进行定量表征。为量化而开发的朴素统计校准模型利用了一套光谱中的全套波数,从而导致化学成分与所得到的吸收模式变化之间的机械解释丧失,这些变化支撑了其预测能力。使用同一组光谱的稀疏表示,可以建立替代的校准模型,其中仅使用一组选定的吸收带来对各种气溶胶特性进行定量预测。这样的模型是理想的,因为它们允许我们将预测的特性与其潜在的分子结构相关联。在这项工作中,我们提出了四种用于实现FT-IR光谱校正模型中稀疏性的算法的评估。稀疏校准模型在模型构建过程中从红外光谱中排除了不必要的波数,从而可以识别和评估复杂气溶胶混合物中分子的最相关振动模式,从而对各种气溶胶成分的测量方法进行定量预测。我们研究了两种类型的模型:一种基于实验室校准标准来预测环境样品中的醇COH,羧酸COH,烷烃CH和羰基CO官能团(FG)的丰度,另一种模型预测热光反射率(TOR)的有机碳(OC)和通过将红外光谱直接校准为保留用于校准的一组环境样品,将新的环境样品中的元素碳(EC)质量进行校准。我们描述了每种校准模型的开发和选择,并评估了稀疏性对预测性能的影响。最后,将解释用于定量预测FG和TOR OC和EC浓度的吸收带。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号