首页> 外文OA文献 >Mobile sensor network noise reduction and recalibration using a Bayesian network
【2h】

Mobile sensor network noise reduction and recalibration using a Bayesian network

机译:使用贝叶斯网络的移动传感器网络降噪和重新校准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

People are becoming increasingly interested in mobile air quality sensornetwork applications. By eliminating the inaccuracies caused by spatial andtemporal heterogeneity of pollutant distributions, this method shows greatpotential for atmospheric research. However, systems based on low-cost airquality sensors often suffer from sensor noise and drift. For the sensingsystems to operate stably and reliably in real-world applications, thoseproblems must be addressed. In this work, we exploit the correlation ofdifferent types of sensors caused by cross sensitivity to help identify andcorrect the outlier readings. By employing a Bayesian network based system,we are able to recover the erroneous readings and recalibrate the driftedsensors simultaneously. Our method improves upon the state-of-art Bayesianbelief network techniques by incorporating the virtual evidence and adjustingthe sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network todetect and recover the abnormal readings, (2) developed methods to update thesensor calibration functions infield without requirement of ground truth,and (3) extended the Bayesian network with virtual evidence for infieldsensor recalibration. To validate our technique, we have tested our techniquewith metal oxide sensors measuring NO, CO, and O in a real-worlddeployment. Compared with the existing Bayesian belief network techniques,results based on our experiment setup demonstrate that our system can reduceerror by 34.1 % and recover 4 times more data on average.
机译:人们对移动空气质量传感器网络应用越来越感兴趣。通过消除由污染物分布的时空异质性引起的误差,该方法在大气研究中具有很大的潜力。但是,基于低成本空气质量传感器的系统通常会遭受传感器噪声和漂移的困扰。为了使传感系统在实际应用中稳定可靠地运行,必须解决这些问题。在这项工作中,我们利用由交叉灵敏度引起的不同类型传感器的相关性来帮助识别和纠正异常值。通过使用基于贝叶斯网络的系统,我们能够恢复错误的读数并同时重新校准漂移的传感器。我们的方法通过合并虚拟证据并递归调整传感器校准功能来改进最新的贝叶斯信度网络技术。具体来说,我们(1)设计了基于贝叶斯信度网络的系统来检测和恢复异常读数,(2 )开发了无需实地求值即可在现场更新传感器校准功能的方法,并且(3)用用于现场传感器重新校准的虚拟证据扩展了贝叶斯网络。为了验证我们的技术,我们已经在实际部署中使用测量NO,CO和O的金属氧化物传感器对我们的技术进行了测试。与现有贝叶斯信念网络技术相比,基于我们的实验设置的结果表明,我们的系统可以减少34.1%的错误,并且平均可以恢复4倍的数据。

著录项

  • 作者

    Xiang Y.; Tang Y.; Zhu W.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号