首页> 外文OA文献 >Data-Driven Real-Time Online Taxi-Hailing Demand Forecasting Based on Machine Learning Method
【2h】

Data-Driven Real-Time Online Taxi-Hailing Demand Forecasting Based on Machine Learning Method

机译:基于机器学习方法的数据驱动实时在线出租车 - 海运需求预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of the intelligent transport system has created conditions for solving the supply–demand imbalance of public transportation services. For example, forecasting the demand for online taxi-hailing could help to rebalance the resource of taxis. In this research, we introduced a method to forecast real-time online taxi-hailing demand. First, we analyze the relation between taxi demand and online taxi-hailing demand. Next, we propose six models containing different information based on backpropagation neural network (BPNN) and extreme gradient boosting (XGB) to forecast online taxi-hailing demand. Finally, we present a real-time online taxi-hailing demand forecasting model considering the projected taxi demand (“PTX”). The results indicate that including more information leads to better prediction performance, and the results show that including the information of projected taxi demand leads to a reduction of MAPE from 0.190 to 0.183 and an RMSE reduction from 23.921 to 21.050, and it increases R2 from 0.845 to 0.853. The analysis indicates the demand regularity of online taxi-hailing and taxi, and the experiment realizes real-time prediction of online taxi-hailing by considering the projected taxi demand. The proposed method can help to schedule online taxi-hailing resources in advance.
机译:智能交通系统的发展创造了条件,为解决公共交通服务的供求失衡。例如,在预测网上的士海陵需求可能有助于重新平衡出租车的资源。在这项研究中,我们介绍了预测实时在线出租车欢呼需求的方法。首先,我们分析出租车点播和在线出租车欢呼需求之间的关系。接下来,我们提出了含有不同信息的六款车型基于BP神经网络(BPNN)和极端梯度上提升(XGB)预测在线出租车欢呼需求。最后,我们提出了一个实时在线的出租车欢呼需求预测模型考虑预计出租车需求(“PTX”)。结果表明,包括更多的信息,带来更好的预测性能,结果表明,其中包括预测的出租车需求导致的,从0.190到0.183的减少MAPE,并从23.921的RMSE下降至21.050的信息,并将其从0.845提高R2到0.853。分析表明在线出租车砸击和出租车的需求规律,实验实现在线出租车欢呼考虑预计出租车需求的实时预测。该方法可以帮助提前预约在线出租车欢呼资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号