首页> 外文OA文献 >The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars
【2h】

The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

机译:跨轨扫描ATMS辐射计的新型无源微波神经网络降水检索(PNPR)算法:使用GPM和TRMM星载雷达在欧洲和非洲进行描述和验证研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this paper is to describe the development and evaluate theperformance of a completely new version of the Passive microwave Neural networkPrecipitation Retrieval (PNPR v2), an algorithm based on a neural networkapproach, designed to retrieve the instantaneous surface precipitation rateusing the cross-track Advanced Technology Microwave Sounder (ATMS) radiometer measurements. This algorithm, developedwithin the EUMETSAT H-SAF program, represents an evolution of the previousversion (PNPR v1), developed for AMSU/MHS radiometers (and used anddistributed operationally within H-SAF), with improvements aimed atexploiting the new precipitation-sensing capabilities of ATMS with respect toAMSU/MHS. In the design of the neural network the new ATMS channels comparedto AMSU/MHS, and their combinations, including the brightness temperaturedifferences in the water vapor absorption band, around 183 GHz, areconsidered. The algorithm is based on a single neural network, for all typesof surface background, trained using a large database based on 94cloud-resolving model simulations over the European and the African areas.The performance of PNPR v2 has been evaluated through an intercomparison ofthe instantaneous precipitation estimates with co-located estimates from theTRMM Precipitation Radar (TRMM-PR) and from the GPM Core Observatory Ku-bandPrecipitation Radar (GPM-KuPR). In the comparison with TRMM-PR, over theAfrican area the statistical analysis was carried out for a 2-year(2013–2014) dataset of coincident observations over a regular grid at0.5°  ×  0.5° resolution. The results have shown agood agreement between PNPR v2 and TRMM-PR for the different surface types.The correlation coefficient (CC) was equal to 0.69 over ocean and 0.71 overvegetated land (lower values were obtained over arid land and coast), and theroot mean squared error (RMSE) was equal to 1.30 mm h over ocean and1.11 mm h over vegetated land. The results showed a slight tendencyto underestimate moderate to high precipitation, mostly over land, andoverestimate moderate to light precipitation over ocean. Similar results wereobtained for the comparison with GPM-KuPR over the European area (15 months,from March 2014 to May 2015 of coincident overpasses) with slightly lower CC(0.59 over vegetated land and 0.57 over ocean) and RMSE (0.82 mm hover vegetated land and 0.71 mm h over ocean), confirming a goodagreement also between PNPR v2 and GPM-KuPR. The performance of PNPR v2 overthe African area was also compared to that of PNPR v1. PNPR v2 has higher over the different surfaces, with generally better estimation of lowprecipitation, mostly over ocean, thanks to improvements in the design of theneural network and also to the improved capabilities of ATMS compared toAMSU/MHS. Both versions of PNPR algorithm have shown a general consistencywith the TRMM-PR.
机译:本文的目的是描述一种全新版本的无源微波神经网络沉淀物回收(PNPR v2)的开发和性能,PNPR v2是一种基于神经网络方法的算法,旨在利用交叉轨迹来检索瞬时表面降水率。先进技术微波测深仪(ATMS)辐射计测量。此算法是在EUMETSAT H-SAF程序中开发的,代表了先前版本(PNPR v1)的演进,该版本是为AMSU / MHS辐射计开发的(并在H-SAF内进行操作和分发),并进行了改进,旨在利用新的降水感测功能关于AMSU / MHS的ATMS。在神经网络的设计中,考虑了与AMSU / MHS相比的新ATMS通道及其组合,包括183 GHz附近水蒸气吸收带中的亮度温度差异。该算法基于单个神经网络,适用于所有类型的表面背景,并使用大型数据库进行了训练,该数据库基于欧洲和非洲地区的94种云解析模型模拟.PNPR v2的性能已通过瞬时降水的对比进行了评估估算值与TRMM降水雷达(TRMM-PR)和GPM核心天文台Ku波段降水雷达(GPM-KuPR)位于同一位置的估算值。在与TRMM-PR的比较中,对非洲地区进行了为期2年(2013-2014年)的一致观测数据集的统计分析,该数据集以0.5°××0.5°的分辨率在规则网格上进行。结果表明PNPR v2和TRMM-PR在不同的地表类型上具有良好的一致性,海洋的相关系数(CC)等于0.69,植被过度的相关系数(CC)等于0.71(干旱和沿海地区的平均值较低),均方根平方误差(RMSE)在海洋上等于1.30mmmmh,在植被上等于1.11mmmmh。结果表明,有轻微的趋势低估了中到高降水,主要是在陆地上,而高估了中到轻降水。在欧洲地区(2014年3月至2015年5月同时发生的立交桥为15个月)与GPM-KuPR进行比较时,获得了相似的结果,CC略低(植被地带为0.59,海洋地带为0.57)和RMSE(0.82mm / mm悬浮植物地)和在海洋上的0.71?mm h),也证实了PNPR v2与GPM-KuPR之间的良好协议。 PNPR v2在非洲地区的表现也与PNPR v1进行了比较。由于神经网络设计的改进以及与AMSU / MHS相比ATMS的功能得到了改进,PNPR v2在不同表面上具有较高的位置,通常对大部分海洋来说,对低降水的估计通常更好。两种版本的PNPR算法均显示出与TRMM-PR的一般一致性。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号