首页> 外文OA文献 >Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)
【2h】

Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

机译:泥炭,农作物残渣,家用生物燃料,草和其他燃料燃烧产生的微量气体排放:密苏拉实验中心第四个消防实验室(FLAME-4)的配置和傅里叶变换红外(FTIR)组件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the fourth Fire Lab at Missoula Experiment (FLAME-4, October–November2012) a large variety of regionally and globally significant biomass fuelswas burned at the US Forest Service Fire Sciences Laboratory in Missoula,Montana. The particle emissions were characterized by an extensive suite ofinstrumentation that measured aerosol chemistry, size distribution, opticalproperties, and cloud-nucleating properties. The trace gas measurementsincluded high-resolution mass spectrometry, one- and two-dimensional gaschromatography, and open-path Fourier transform infrared (OP-FTIR)spectroscopy. This paper summarizes the overall experimental design forFLAME-4 – including the fuel properties, the nature of the burn simulations,and the instrumentation employed – and then focuses on the OP-FTIR results. TheOP-FTIR was used to measure the initial emissions of 20 trace gases:CO, CO, CH, CH, CH, CH,HCHO, HCOOH, CHOH, CHCOOH, glycolaldehyde, furan, HO, NO,NO, HONO, NH, HCN, HCl, and SO. These species include mostof the major trace gases emitted by biomass burning, and for several of thesecompounds, this is the first time their emissions are reported for importantfuel types. The main fire types included African grasses, Asian rice straw,cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian andextratropical peat, temperate and boreal coniferous canopy fuels, US cropresidue, shredded tires, and trash. Comparisons of the OP-FTIR emissionfactors (EFs) and emission ratios (ERs) to field measurements of biomassburning verify that the large body of FLAME-4 results can be used to enhancethe understanding of global biomass burning and its representation inatmospheric chemistry models.Crop residue fires are widespread globally and account for the most burnedarea in the US, but their emissions were previously poorly characterized.Extensive results are presented for burning rice and wheat straw: two majorglobal crop residues. Burning alfalfa produced the highest average NHEF observed in the study (6.63 ± 2.47 g kg), while sugar canefires produced the highest EF for glycolaldehyde (6.92 g kg) andother reactive oxygenated organic gases such as HCHO, HCOOH, andCHCOOH. Due to the high sulfur and nitrogen content of tires, theyproduced the highest average SO emissions (26.2 ± 2.2 g kg)and high NO and HONO emissions. High variability wasobserved for peat fire emissions, but they were consistently characterizedby large EFs for NH (1.82 ± 0.60 g kg) and CH(10.8 ± 5.6 g kg). The variability observed in peat fire emissions,the fact that only one peat fire had previously been subject to detailedemissions characterization, and the abundant emissions from tropicalpeatlands all impart high value to our detailed measurements of theemissions from burning three Indonesian peat samples. This study alsoprovides the first EFs for HONO and NO for Indonesian peat fires. Opencooking fire emissions of HONO and HCN are reported for the first time, andthe first emissions data for HCN, NO, NO, HONO, glycolaldehyde, furan,and SO are reported for "rocket" stoves: a common type of improvedcookstove. The HCN / CO emission ratios for cooking fires (1.72 × 10 ± 4.08 × 10)and peat fires (1.45 × 10 ± 5.47 × 10)are well below and above thetypical values for other types of biomass burning, respectively. This wouldaffect the use of HCN / CO observations for source apportionment in someregions. Biomass burning EFs for HCl are rare and are reported for the firsttime for burning African savanna grasses. High emissions of HCl were alsoproduced by burning many crop residues and two grasses from coastalecosystems. HCl could be the main chlorine-containing gas in very freshsmoke, but rapid partitioning to aerosol followed by slower outgassingprobably occurs.
机译:在密苏拉实验的第四个消防实验室(FLAME-4,2012年10月至11月)中,蒙大拿州密苏拉的美国森林服务消防科学实验室燃烧了多种区域和全球重要的生物质燃料。颗粒物排放的特征在于广泛的仪器套件,可测量气溶胶的化学性质,尺寸分布,光学性质和成云性。痕量气体的测量包括高分辨率质谱法,一维和二维气相色谱法以及开路傅立叶变换红外光谱(OP-FTIR)。本文总结了FLAME-4的总体实验设计-包括燃料特性,燃烧模拟的性质以及所使用的仪器-然后重点介绍了OP-FTIR结果。 OP-FTIR用于测量20种痕量气体的初始排放:CO,CO,CH,CH,CH,CH,HCHO,HCOOH,CHOH,CHCOOH,乙醇醛,呋喃,HO,NO,NO,HONO,NH,HCN ,HCl和SO。这些物质包括生物质燃烧产生的大多数主要微量气体,对于其中的几种化合物,这是首次报告重要燃料类型的排放。主要的火灾类型包括非洲草,亚洲稻草,烹饪火(开放式(三石),火箭和气化炉),印度尼西亚和外向泥炭,温带和北方针叶树冠燃料,美国农作物残渣,碎轮胎和垃圾。将OP-FTIR排放因子(EFs)和排放比(ERs)与生物质燃烧的现场测量结果进行比较,证明FLAME-4结果的大量结果可用于增进对全球生物质燃烧及其在大气化学模型中的表示的了解。火灾在全球范围内很普遍,占美国最严重的火灾地区,但其排放以前却很难确定。燃烧稻米和麦草的广泛结果是:两种主要的全球农作物残渣。苜蓿燃烧产生的平均NHEF最高(6.63±2.47 g kg),而甘蔗燃烧产生的乙醇醛(6.92 g kg)和其他反应性氧化有机气体如HCHO,HCOOH和CHCOOH的EF最高。由于轮胎中高的硫和氮含量,它们产生了最高的平均SO排放量(26.2±2.2 g kg)以及高的NO和HONO排放量。观察到泥炭火的排放具有较高的可变性,但始终如一地以NH(1.82±0.60 g kg)和CH(10.8±5.6 g kg)的EF为特征。观察到的泥炭火排放的可变性,以前仅对一个泥炭火进行了详细的排放特征,以及热带草原的大量排放均对我们对燃烧三个印尼泥炭样品的排放进行详细测量具有很高的价值。这项研究还为印尼泥炭大火提供了第一个用于HONO和NO的EF。首次报告了HONO和HCN的明火燃烧排放,并且报告了“火箭式”炉灶的HCN,NO,NO,HONO,乙醇醛,呋喃和SO的第一个排放数据:一种常见的改进型炊具。烹饪火(1.72×10±4.08×10)和泥炭火(1.45×10±5.47×10)的HCN / CO排放比分别远低于和高于其他类型生物质燃烧的典型值。这将影响在某些区域将HCN / CO观测资料用于源分配。用于HCl的生物质燃烧EFs很少见,并且首次被报道用于燃烧非洲大草原草。燃烧沿海地区生态系统中的许多农作物残渣和两种草还产生了高浓度的HCl。 HCl可能是非常新鲜的烟气中主要的含氯气体,但可能会迅速分配为气溶胶,然后放气速度可能会变慢。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号