首页> 外文OA文献 >A remote-sensing-based intensity–duration threshold, Faifa Mountains, Saudi Arabia
【2h】

A remote-sensing-based intensity–duration threshold, Faifa Mountains, Saudi Arabia

机译:基于遥感的强度持续时间阈值,Faifa山脉,沙特阿拉伯

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Construction of intensity–duration (ID) thresholds andearly-warning and nowcasting systems for landslides (EWNSLs) are hampered bythe paucity of temporal and spatial archival data. This work representssignificant steps towards the development of a prototype EWNSL to forecastand nowcast landslides over the Faifa Mountains in the Red Sea Hills. Thedeveloped methodologies rely on readily available, temporal, archival GoogleEarth and Sentinel-1A imagery, precipitation measurements, and limited fielddata to construct an ID threshold for Faifa. The adopted procedures entailthe generation of an ID threshold to identify the intensity and duration ofprecipitation events that cause landslides in the Faifa Mountains, and thegeneration of pixel-based ID curves to identify locations where movement islikely to occur. Spectral and morphologic variations in temporal GoogleEarth imagery following precipitation events were used to identifylandslide-producing storms and generate the Faifa ID threshold (I =4.89D−0.65). Backscatter coefficient variations in radar imagery wereused to generate pixel-based ID curves and identify locations where massmovement is likely to occur following landslide-producing storms. Thesemethodologies accurately distinguished landslide-producing storms fromnon-landslide-producing ones and identified the locations of theselandslides with an accuracy of 60 %.
机译:强度 - 持续时间(ID)的构建阈值滑坡(EWNSLs)及早期预警和临近预报系统受到阻碍的时间和空间的存档数据的bythe缺乏。这对原型EWNSL的开发工作representssignificant步骤forecastand临近预报在红海山体滑坡在Faifa山。 Thedeveloped方法依靠现成的,时间的,存档GoogleEarth的和Sentinel-1A图像,降水测量,和有限的fielddata来构造Faifa的ID阈值。所采用的程序entailthe生成的ID阈值,以确定强度和持续时间ofprecipitation事件原因滑坡在Faifa山脉,并且基于像素的ID曲线thegeneration其中运动islikely发生来识别位置。光谱和颞GoogleEarth的图像以下降水事件形态学变化被用来identifylandslide产生风暴和生成Faifa ID阈值(I = 4.89D-0.65)。在雷达图像的后向散射系数的变化wereused以生成基于像素的ID曲线和确定的位置,其中massmovement很可能发生以下滑坡产生风暴。 Thesemethodologies准确分辨滑坡产生风暴fromnon滑坡用生产一和识别theselandslides的位置以60%的准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号