首页> 外文OA文献 >Modeling ssDNA electrophoretic migration with band broadening in an entangled or cross-linked network
【2h】

Modeling ssDNA electrophoretic migration with band broadening in an entangled or cross-linked network

机译:模拟SSDNA电泳迁移,在纠缠或交联网络中的带扩展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We use a coarse-grained model proposed by Graham and Larson based on the temporary network model by Schieber et al.. [1] to simulate the electrophoretic motion of ssDNA and corresponding band broadening due to dispersion. With dimensionless numbers reflecting the experimental physical properties, we are able to simulate ssDNA behavior under weak to moderate electric field strengths for chains with 8–50 entanglements per chain (∼1000–8500 14base pairs), and model smoothly the transition from reptation to oriented reptation. These results are fitted with an interpolation equation, which allows the user to calculate dimensionless mobilities easily from input parameters characterizing the gel matrix, DNA molecules, and field strengths. Dimensionless peak widths are predicted from mobility fluctuations using the central limit theorem and the assumption that the mobility fluctuations are Gaussian. Using results from previous studies of ssDNA physical properties (effective charge Ξq and Kuhn step length b K ) and sieving matrix properties (pore size or tube diameter a ), we give scaling factors to convert the dimensionless values to “real” experimental values, including the mobility, migration distance, and time. We find that the interpolation equation fits well the experimental data of ssDNA mobilities and peak widths, supporting the validity of the coarse-grained model. The model does not account for constraint release and hernia formation, and assumes that the sieving network is a homogeneous microstructure with no temperature gradients and no peak width due to injection. These assumptions can be relaxed in future work for more accurate prediction.
机译:我们使用基于Schieber等人的临时网络模型提出的Graham和Larson提出的粗粒模型。[1]模拟SSDNA的电泳运动和由于分散而扩大的相应带宽。具有反映实验性物理性质的无量纲数,我们能够模拟弱的SSDNA行为,以适度的电场强度,用于每个链的8-50个缠结(〜1000-8500 14base对),以及模型将从Reptation的过渡到导向重新开始。这些结果配备了插值方程,其允许用户容易地从表征凝胶基质,DNA分子和场强的输入参数计算无量纲迁移率。使用中央极限定理的移动性波动预测无量纲峰宽,并且假设移动波动波动是高斯的假设。使用先前研究SSDNA物理性质的结果(有效电荷ξQ和Kuhn步长B k)和筛分矩阵特性(孔径或管直径a),我们提供缩放因素,将无量纲值转换为“真实”的实验值,包括移动性,迁移距离和时间。我们发现插值方程非常适合SSDNA迁移率和峰值宽度的实验数据,支持粗粒模型的有效性。该模型不考虑约束释放和疝气形成,并假设筛分网络是一种均匀的微观结构,没有温度梯度,由于注射引起的峰值宽度。这些假设可以在将来的工作中放宽,以便更准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号