首页> 外文OA文献 >A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement
【2h】

A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement

机译:一种基于CNN的基于CNN的框架,用于从电容ECG测量分类信号质量和睡眠位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring.
机译:通过从身体运动的信号质量的频繁波动和睡眠位置的变化来阻碍电容ECG(CECG)的进一步探测。处理框架必须基本上适应充分利用该信号。因此,我们提出了一种新的信号处理框架,其使用基于卷积神经网络(CNN)的多级分类模型(Qua_Model)来确定短信号段(2和4秒)的信号质量。我们建立了另一个独立的深层CNN分类器(POS_MODEL)来分类睡眠位置。在验证中,招募了12个科目30分钟的实验,这需要将受试者躺在不同睡眠位置的床上。 Qua_Model分类为清除(C1类)的短段用于确定与POS_MODEL的睡眠位置。在10倍交叉验证中,4秒长度的信号的Qua_model可以以0.99精度和0.99召回识别C1类的信号; POS_MODEL可以以0.99平均精度和0.99平均召回的0.99平均召回,识别仰卧睡眠位置,左侧和右侧睡眠位置。考虑到每晚累积的数据量和信号质量中的不稳定性,这种全自动处理框架对于个人医疗保健系统是必不可少的。因此,本研究可以作为CECG技术试图探索CECG以探索未经约束的心脏监测的重要步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号