首页> 外文OA文献 >Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria
【2h】

Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria

机译:阿拉斯加的冬季变暖加速了种植体促进的木质素分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. Results The β-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. Conclusions Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract
机译:抽象背景在温暖的世界中,先前冷冻有机碳(c)的微生物分解是多年冻土地区到大气中最有可能的积极气候反馈之一。但是,对微生物调解对化学顽固性C不稳定性的机械理论有限;因此,至关重要,识别和评估化学克普拉普拉族C的活性分解,这对于预测C循环反馈和它们对气候变化影响的相对强度至关重要。使用稳定同位素探测在耗尽土壤稳定性后,通过975天的实验室孵育,揭示了木质素的微生物分解的身份,并揭示了它们对升温的反应。结果β-植物杆菌属伯克德利亚植物占潜在木质素分解总量的95.1%。始终如一地,从我们的苔原土壤中孤立的伯克德利亚可以用木质素作为唯一的C来源。 2.2°C增加热化显着增加了所有潜在木质素分解的总丰富和功能能力。除了Burkowneria,通过升温82倍,刺激能够刺激木质素的毛刺分解(例如Bradyrhizobium和甲基杆菌属)的α-植物。这些社区的变化集体增加了灌注效果,即新鲜C输入土壤后现有C的分解。因此,温热加剧土壤C不稳定性,如通过微生物化的气候-C造型验证的。结论我们的研究结果令人震惊,这表明加速C分解在变暖条件下会使Tundra土壤较大的生物学C来源而不是预期。视频摘要

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号