首页> 外文OA文献 >Analysis of Single-Cell Gene Pair Coexpression Landscapes by Stochastic Kinetic Modeling Reveals Gene-Pair Interactions in Development
【2h】

Analysis of Single-Cell Gene Pair Coexpression Landscapes by Stochastic Kinetic Modeling Reveals Gene-Pair Interactions in Development

机译:随机动力学模型的单细胞基因对共塑造景观分析揭示了发展中基因对的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single-cell transcriptomics is advancing discovery of the molecular determinants of cell identity, while spurring development of novel data analysis methods. Stochastic mathematical models of gene regulatory networks help unravel the dynamic, molecular mechanisms underlying cell-to-cell heterogeneity, and can thus aid interpretation of heterogeneous cell-states revealed by single-cell measurements. However, integrating stochastic gene network models with single cell data is challenging. Here, we present a method for analyzing single-cell gene-pair coexpression patterns, based on biophysical models of stochastic gene expression and interaction dynamics. We first developed a high-computational-throughput approach to stochastic modeling of gene-pair coexpression landscapes, based on numerical solution of gene network Master Equations. We then comprehensively catalogued coexpression patterns arising from tens of thousands of gene-gene interaction models with different biochemical kinetic parameters and regulatory interactions. From the computed landscapes, we obtain a low-dimensional “shape-space” describing distinct types of coexpression patterns. We applied the theoretical results to analysis of published single cell RNA sequencing data and uncovered complex dynamics of coexpression among gene pairs during embryonic development. Our approach provides a generalizable framework for inferring evolution of gene-gene interactions during critical cell-state transitions.
机译:单细胞转录正在推进小区标识的分子决定簇的发现,而刺激的新颖的数据分析方法的发展。的基因调控网络的帮助解开这个动态随机数学模型,分子机制的细胞与细胞间的异质性,因而可以帮助异质细胞状态的解读揭示单细胞的测量。然而,整合随机基因网络模型与单细胞的数据是具有挑战性的。这里,我们提出一种用于分析单细胞基因共表达对图案,基于随机基因表达和相互作用动力学的生物物理模型的方法。我们首先开发出了高计算吞吐量的方法来基因共表达对景观的随机建模,基于基因网络主方程的数值解。然后,我们全面编目从数以万计的基因 - 基因相互作用模型所产生的不同的生化动力学参数和监管的互动共表达模式。从所计算的风景,我们得到了一个低维“形状空间”描述不同类型的共表达模式。我们在胚胎发育过程中应用的理论结果公布单细胞RNA测序数据和基因对之间的共表达的裸露复杂的动态的分析。我们的方法提供了在关键的细胞状态转换推断基因 - 基因相互作用的演化一个一般化的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号