首页> 外文OA文献 >Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes
【2h】

Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes

机译:基于柔性观察方案的规则变化的时效过程的广义最小二乘估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Regularly varying stochastic processes model extreme dependence betweenprocess values at different locations and/or time points. For such processes wepropose a two-step parameter estimation of the extremogram, when some part ofthe domain of interest is fixed and another increasing. We provide conditionsfor consistency and asymptotic normality of the empirical extremogram centredby a pre-asymptotic version for such observation schemes. For max-stableprocesses with Fr{'e}chet margins we provide conditions, such that theempirical extremogram (or a bias-corrected version) centred by its true versionis asymptotically normal. In a second step, for a parametric extremogram model,we fit the parameters by generalised least squares estimation and proveconsistency and asymptotic normality of the estimates. We propose subsamplingprocedures to obtain asymptotically correct confidence intervals. Finally, weapply our results to a variety of Brown-Resnick processes. A simulation studyshows that the procedure works well also for moderate sample sizes.
机译:定期不同的随机过程模型在不同位置和/或时间点之间进行过程之间的极端依赖性。对于这样的过程,当利益领域的某些部分是固定的并且另一个增加的情况下,Wepropose的两步参数估计。我们为逐渐变量的偏振标题进行了一致性和渐近常态,为这种观察计划进行了渐近版的一致性和渐近常态。对于具有FR {'e} CHET MARGINS的MAX-stableProcess,我们提供条件,例如由其真正版本的渐近正常的偏离辐射信号(或偏置校正版本)。在第二步中,对于参数辐条正级别模型,我们通过概括最小二乘估计和估计的渐近性和渐近常态来符合参数。我们提出了分支过程,以获得渐近纠正的置信区间。最后,将我们的结果培养到各种棕色重新纳米进程。模拟轮廓,程序的运作良好也适用于适度的样本尺寸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号