首页> 外文OA文献 >Anode partial flooding modelling of proton exchange membrane fuel cells: Optimisation of electrode properties and channel geometries
【2h】

Anode partial flooding modelling of proton exchange membrane fuel cells: Optimisation of electrode properties and channel geometries

机译:质子交换膜燃料电池的阳极部分泛洪模型:电极性能优化和通道几何形状

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A two-dimensional, along-the-channel, two-phase flow, non-isothermal model is developed which represents a low temperature proton exchange membrane (PEM) fuel cell. The model describes the liquid water profiles and heat distributions inside the membrane electrode assembly (MEA) and gas flow channels as well as effectiveness factors of the catalyst layers. All the major transport and electrochemical processes are taken into account except for reactant species crossover through the membrane. The catalyst layers are treated as spherical agglomerates with inter-void spaces, which are in turn covered by ionomer and liquid water films. Liquid water formation and transport at the anode is included while water phase-transfer between vapour, dissolved water and liquid water associated with membrane/ionomer water uptake, desorption and condensation/evaporation are considered. The model is validated by experimental data and used to numerically study the effects of electrode properties (contact angel, porosity, thickness and platinum loading) and channel geometries (length and depth) on liquid water profiles and cell performance. Results reveal low liquid water saturation with large contact angle, low electrode porosity and platinum loading, and short and deep channel. An optimal channel length of 1 cm was found to maximise the current densities at low cell voltages. A novel channel design featured with multi-outlets and inlets along the channel was proposed to mitigate the effect of water flooding and improve the cell performance.
机译:二维,沿该通道,二相流,非等温模型开发其表示低温质子交换膜(PEM)燃料电池。该模型描述了在膜电极组件(MEA)和气体流动通道以及催化剂层的有效因子内的液体水型材和热分布。所有主要的运输和电化学过程都考虑到,除了反应物类交叉通过膜。催化剂层被视为球形聚集体与间的空隙空间,这又由离聚物和液体水薄膜覆盖。而水蒸汽之间溶于水液态水相转移,并与膜/离聚物水摄取相关,解吸和冷凝/蒸发被认为是液态水形成和运输在阳极是包括在内。该模型是由实验数据验证,并用于数字研究电极性能对液态水型材和电池性能的影响(接触角,孔隙率,厚度和铂负载)和信道的几何形状(长度和深度)。结果揭示了具有大的接触角,低电极的孔隙率和铂负载,和短而深通道低液态水饱和度。 1cm的最优信道长度被发现以最大化在低电池电压的电流密度。多出口,并沿着通道入口特色的新型通道设计提出了减轻水驱效果,提高了电池的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号