首页> 外文OA文献 >Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse
【2h】

Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse

机译:评估单次Multibox探测器和YOLO深度学习模型,在温室中检测西红柿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of robotic solutions for agriculture requires advanced perception capabilities that can work reliably in any crop stage. For example, to automatise the tomato harvesting process in greenhouses, the visual perception system needs to detect the tomato in any life cycle stage (flower to the ripe tomato). The state-of-the-art for visual tomato detection focuses mainly on ripe tomato, which has a distinctive colour from the background. This paper contributes with an annotated visual dataset of green and reddish tomatoes. This kind of dataset is uncommon and not available for research purposes. This will enable further developments in edge artificial intelligence for in situ and in real-time visual tomato detection required for the development of harvesting robots. Considering this dataset, five deep learning models were selected, trained and benchmarked to detect green and reddish tomatoes grown in greenhouses. Considering our robotic platform specifications, only the Single-Shot MultiBox Detector (SSD) and YOLO architectures were considered. The results proved that the system can detect green and reddish tomatoes, even those occluded by leaves. SSD MobileNet v2 had the best performance when compared against SSD Inception v2, SSD ResNet 50, SSD ResNet 101 and YOLOv4 Tiny, reaching an F1-score of 66.15%, an mAP of 51.46% and an inference time of 16.44ms with the NVIDIA Turing Architecture platform, an NVIDIA Tesla T4, with 12 GB. YOLOv4 Tiny also had impressive results, mainly concerning inferring times of about 5 ms.
机译:农业机器人解决方案的发展需要先进的感知能力,可以在任何作物阶段可靠地工作。例如,为了在温室中自动化番茄收获过程,视觉感知系统需要在任何生命周期阶段(花到成熟番茄花)中的番茄。视觉番茄检测的最先进的侧重于成熟的番茄,从背景中具有独特的颜色。本文有助于绿色和红番茄的注释视觉数据集。这种数据集不常见,而不能用于研究目的。这将实现边缘人工智能的进一步发展,以原位和实时的视觉番茄检测,以便开发收获机器人所需的。考虑到这一数据集,选择了五种深入学习模型,培训和基准测试,以检测在温室中生长的绿色和红番茄。考虑到我们的机器人平台规格,仅考虑单次多射击探测器(SSD)和YOLO架构。结果证明,该系统可以检测绿色和红番茄,即使是叶子堵塞的那些。当针对SSD盗梦空间V2相比SSD MobileNet V2具有最好的性能,SSD RESNET 50,SSD RESNET 101和YOLOv4微小的,达到了F1-分数的66.15%,51.46的%的MAP和16.44ms与NVIDIA图灵的推理时间架构平台,一个NVIDIA特斯拉T4,与12 GB。 YOLOV4微小的结果也有令人印象深刻的结果,主要有关推断时间约为5毫秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号