首页> 外文OA文献 >A quantitative approach for the analysis of clinician recognition of acute respiratory distress syndrome using electronic health record data
【2h】

A quantitative approach for the analysis of clinician recognition of acute respiratory distress syndrome using electronic health record data

机译:用电子健康记录数据分析临床医生识别急性呼吸窘迫综合征的定量方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ImportanceDespite its efficacy, low tidal volume ventilation (LTVV) remains severely underutilized for patients with acute respiratory distress syndrome (ARDS). Physician under-recognition of ARDS is a significant barrier to LTVV use. We propose a computational method that addresses some of the limitations of the current approaches to automated measurement of whether ARDS is recognized by physicians.ObjectiveTo quantify patient and physician factors affecting physicians' tidal volume selection and to build a computational model of physician recognition of ARDS that accounts for these factors.Design, setting, and participantsIn this cross-sectional study, electronic health record data were collected for 361 ARDS patients and 388 non-ARDS hypoxemic (control) patients in nine adult intensive care units at four hospitals between June 24 and December 31, 2013.MethodsStandardized tidal volumes (mL/kg predicted body weight) were chosen as a proxy for physician decision-making behavior. Using data-science approaches, we quantified the effect of eight factors (six severity of illness, two physician behaviors) on selected standardized tidal volumes in ARDS and control patients. Significant factors were incorporated in computational behavioral models of physician recognition of ARDS.ResultsHypoxemia severity and ARDS documentation in physicians' notes were associated with lower standardized tidal volumes in the ARDS cohort. Greater patient height was associated with lower standardized tidal volumes (which is already normalized for height) in both ARDS and control patients. The recognition model yielded a mean (99% confidence interval) physician recognition of ARDS of 22% (9%-42%) for mild, 34% (19%-49%) for moderate, and 67% (41%-100%) for severe ARDS.Conclusions and relevanceIn this study, patient characteristics and physician behaviors were demonstrated to be associated with differences in ventilator management in both ARDS and control patients. Our model of physician ARDS recognition measurement accounts for these clinical variables, providing an electronic approach that moves beyond relying on chart documentation or resource intensive approaches.
机译:进一步的疗效,低潮气卷通风(LTVV)对急性呼吸窘迫综合征(ARDS)患者仍未减少密切化。医生识别ARDS的识别性是对LTVV使用的重要障碍。我们提出了一种计算方法,该计算方法解决了当前关于ARDS的自动测量方法的一些局限性是否由医生识别.Objectiveto量化影响医生潮气卷选择的患者和医生因素,并建立了ARDS的医生认可计算模型考虑到这些因素。这项横断面研究的指导,设定和参与者,在6月24日之间的四个医院的九名成人重症监护室中收集了361名ARDS患者和388名非ARDA缺氧(对照)患者的电子健康记录数据。 2013年12月31日。选择了标准化的潮汐量(ML / kg预测的体重)作为医生决策行为的代理。使用数据科学方法,我们量化了八种因素(六种疾病严重程度,两个医生行为)对ARDS和控制患者所选标准化潮量的影响。在ARDS的医生识别的计算行为模型中纳入了重要因素。医师注意事项的严重程度和ARDS文件的急性和ARDS文件与ARDS队列中的较低标准化潮数有关。在ARDS和对照患者中,更大的患者身高与较低标准化的潮量(其已经正常化的高度)相关。识别模型产生了平均(99%置信区间)医生识别22%(9%-42%)的温和,34%(19%-49%)中等,67%(41%-100%) )对于严重的ARDS.Conclusions和相关性本研究,患者特征和医师行为被证明与ARDS和控制患者的呼吸机管理差异有关。我们的医生ARDS识别测量模型占这些临床变量,提供了一种超越依赖图表文档或资源密集方法的电子方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号