首页> 外文OA文献 >Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement
【2h】

Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

机译:基于自适应多尺度细节增强的遥感图像时空超分辨率重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.
机译:现有的基于重建的超分辨率算法存在许多问题,例如缺乏纹理特征表示和高频细节。多尺度细节增强可以产生更多纹理信息和高频信息。因此,本文提出了基于自适应多尺度细节增强(AMDE-SR)的遥感图像的超分辨率重构。首先,计算每个遥感图像的信息熵,并且具有最大熵值的图像被视为参考图像。随后,使用相位归一化处理时空遥感图像,这是减少图像数据的时间相差并增强信息的互补性。然后使用L0梯度最小化模型分解多尺度图像信息,并且通过迭代后投影(IBP)技术通过差异计算和扩展非冗余层和冗余层来处理非冗余信息。不同级别的非冗余信息是使用跨熵的自适应加权和融合。最后,建立非线性纹理 - 细节增强功能以​​改善小细节的范围,峰值信噪比(PSNR)用作迭代约束。最终,通过迭代优化获得具有丰富纹理信息的高分辨率遥感图像。实际结果显示熵的平均增益高达0.42 dB,对于2的提升措施评估的增强措施,高达0.42 dB的熵增长率和大量的促销收益。实验结果表明,综合SR法的性能表明在视觉和准确性改进方面优于现有的超分辨率重建方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号