首页> 外文OA文献 >Network flow models for designing diameter-constrained minimum-spanning and Steiner trees
【2h】

Network flow models for designing diameter-constrained minimum-spanning and Steiner trees

机译:用于设计直径约束最小跨度和施泰纳树的网络流模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Diameter-Constrained Minimum Spanning Tree Problem seeks a least cost spanning tree subject to a (diameter) bound imposed on the number of edges in the tree between any node pair. A traditional multicommodity flow model with a commodity for every pair of nodes was unable to solve a 20-node and 100-edge problem after one week of computation. We formulate the problem as a directed tree from a selected central node or a selected central edge. Our model simultaneously finds a central node or a central edge and uses it as the source for the commodities in a directed multicommodity flow model with hop constraints. The new model has been able to solve the 20-node, 100-edge instance to optimality after less than four seconds. We also present model enhancements when the diameter bound is odd (these situations are more difficult). We show that the linear programming relaxation of the best formulations discussed in this paper always give an optimal integer solution for two special, polynomially-solvable cases of the problem. We also examine the Diameter Constrained Minimum Steiner Tree problem. We present computational experience in solving problem instances with up to 100 nodes and 1000 edges. The largest model contains more than 250,000 integer variables and more than 125,000 constraints.
机译:直径受限的最小生成树问题寻求一种最小成本的生成树,该树受(节点)边界强加在任何节点对之间的树的边数上。在经过一周的计算后,传统的多商品流模型的每对节点都具有商品,因此无法解决20节点和100边的问题。我们将问题表述为来自选定中心节点或选定中心边缘的有向树。我们的模型同时找到一个中心节点或中心边缘,并将其用作具有跳数约束的有向多商品流模型中商品的来源。新模型能够在不到四秒钟的时间内解决20节点,100边缘实例的最佳情况。当直径边界为奇数(这些情况更困难)时,我们还提供了模型增强功能。我们表明,本文讨论的最佳公式的线性规划松弛总是为问题的两个特殊的,可多项式求解的情况提供最佳的整数解。我们还研究了直径约束最小斯坦纳树问题。我们提供解决多达100个节点和1000条边的问题实例的计算经验。最大的模型包含超过250,000个整数变量和超过125,000个约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号