首页> 外文OA文献 >Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models
【2h】

Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models

机译:使用添加剂量回归模型的概率小时负载预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Short-term hourly load forecasting in South Africa using additive quantile regression (AQR) models is discussed in this study. The modelling approach allows for easy interpretability and accounting for residual autocorrelation in the joint modelling of hourly electricity data. A comparative analysis is done using generalised additive models (GAMs). In both modelling frameworks, variable selection is done using least absolute shrinkage and selection operator (Lasso) via hierarchical interactions. Four models considered are GAMs and AQR models with and without interactions, respectively. The AQR model with pairwise interactions was found to be the best fitting model. The forecasts from the four models were then combined using an algorithm based on the pinball loss (convex combination model) and also using quantile regression averaging (QRA). The AQR model with interactions was then compared with the convex combination and QRA models and the QRA model gave the most accurate forecasts. Except for the AQR model with interactions, the other two models (convex combination model and QRA model) gave prediction interval coverage probabilities that were valid for the 90 % , 95 % and the 99 % prediction intervals. The QRA model had the smallest prediction interval normalised average width and prediction interval normalised average deviation. The modelling framework discussed in this paper has established that going beyond summary performance statistics in forecasting has merit as it gives more insight into the developed forecasting models.
机译:本研究讨论了使用添加剂量回归(AQR)模型的南非南非的短期每小时负荷预测。建模方法允许轻松的可解释性和核对每小时电数据的联合建模中的残余自相关性。使用广义添加剂模型(Gams)进行比较分析。在建模框架中,通过分层交互使用最小绝对收缩和选择操作员(套索)来完成变量选择。考虑了四种模型是具有和不具有交互的Gam和AQR模型。发现具有成对交互的AQR模型是最好的拟合模型。然后使用基于弹丸丢失(凸组合模型)的算法以及使用量子回归平均(QRA)来组合来自四种模型的预测。然后将具有相互作用的AQR模型与凸组合和QRA模型进行比较,QRA模型给出了最准确的预测。除了具有相互作用的AQR模型外,其他两个模型(凸组合模型和QRA模型)对90%,95%和99%的预测间隔有效地提供了有效的预测间隔覆盖率。 QRA模型具有最小的预测间隔归一化平均化平均宽度和预测间隔归一化平均偏差。本文讨论的建模框架建立了超越摘要预测性能统计数据的优点,因为它提供了更有洞察力的预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号