首页> 外文OA文献 >Stream processing optimizations for mobile sensing applications
【2h】

Stream processing optimizations for mobile sensing applications

机译:流处理的移动感测应用程序优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile sensing applications (MSAs) are an emerging class of applications that process continuous sensor data streams to make time-sensitive inferences. Representative application domains range from environmental monitoring, context-aware services to recognition of physical activities and social interactions. Example applications involve city air quality assessment, indoor localization, pedometer and speaker identification. The common application workflow is to read data streams from the sensors (e.g, accelerometers, microphone, GPS), extract statistical features, and then present the inferred high-level events to the user. MSAs in the healthcare domain especially draw a significant amount of attention in recent years because sensor-based data collection and assessment offer finer-granularity, timeliness, and higher accuracy in greater quantity than traditional, labor-intensive, data gathering mechanisms in use today, e.g., surveys methods. The higher fidelity and accuracy of the collected data expose new research opportunities, improve the reliability and accuracy of medical decisions, and empower users to manage personal health more effectively.Nonetheless, a critical challenge to practical deployment of MSAs in real-world is to effectively manage limited resources of mobile platforms to meet stringent quality of service (QoS) requirements in terms of processing throughput and delay while ensuring long term robustness. To address the challenge, we model MSAs in dataflows as a graph of processing elements that are connected by communication channels. The processing elements may execute in parallel as long as they have sufficient data to process. A key feature of the dataflow model is that it explicitly capture parallelism and data dependencies between processing elements. Based on the graph composition, we first proposed CSense, a stream-processing toolkit for robust and high-rate MSAs. In this work, CSense provide a simple language for developers to describe their sensing flow without the need to deal with system intricacy, such as memory allocation, concurrency control and power management. The results show up to 19X performance difference may be achieved automatically compared with a baseline using the default runtime concurrency and memory management.Following this direction, we saw the opportunities that MSAs can be significantly improved from the perspective of memory performance and energy efficiency in view of the iterative execution. Therefore, we next focus on optimizing the runtime memory management through compile time analysis. The contribution is a stream compiler that captures the whole program memory behavior to generate an efficient memory layout for runtime access. Experiments show that our memory optimizations reduce memory footprint by as much as 96% while matching or improving the performance of the StreamIt compiler with cache optimizations enabled.On the other hand, while there is a significant body of work that has focused on optimizing the throughput or latency of processing sensor streams, little to no attention has been given to energy efficiency. We proposed an accurate offline energy prediction model for MSAs that leverages the pipeline structure and iterative execution nature to search for the most energy saving batching configuration w.r.t. a deadline constraint. The developers are expected to visualize the energy delay trade-off in the parameter space without runtime profiling. The evaluation shows the worst-case prediction errors are about 7% and 15% for energy and latency respectively despite variable application workloads.
机译:移动感应应用(MSAS)是一类新兴的该处理连续的传感器数据流,使时间敏感的应用的推论。典型的应用领域范围从环境监测,环境感知服务,以表彰体力活动和社会交往。应用实例包括城市空气质量评价,室内定位,计步器和说话人识别。通用应用程序的工作流程是读取数据从传感器(例如,加速度计,麦克风,全球定位系统),提取的统计特征,然后呈现推断高级别活动给用户流。在医疗领域的管理服务协定特别是吸取近年来人们关注的显著量,因为基于传感器的数据收集和评估提供更细的粒度,及时性,并且比传统的,劳动密集型的,数据今天聚集在使用机制,更大数量更高的精度,例如,调查方法。所收集的数据的保真度更高和准确性暴露新的研究机会,提高医疗决策的可靠性和准确性,使用户管理个人健康更effectively.Nonetheless,在现实世界的医疗储蓄户口的实际部署中的关键挑战是如何有效地管理的移动平台资源有限,无法满足吞吐量的处理方面的服务质量(QoS)要求的严格的质量和延迟,同时确保长期稳定性。为了解决这一挑战,我们在数据流管理服务协定建模为处理由通信信道连接的元件的图。处理元件可以并联,只要它们具有足够的数据来执行处理。数据流模型的一个重要特征是,处理元件之间它明确地捕获并行和数据依赖性。基于所述图形组合中,我们首先提出CSENSE,一个流的处理工具包健壮和高速率服务协定。在这项工作中,C感测提供了一个简单的语言,为开发人员描述,而不需要处理复杂的系统,如内存分配,并发控制和电源管理他们的检测流动。结果表明高达19X的性能差异,可以使用缺省运行时并发性和存储器management.Following这个方向上的基线相比自动地实现,我们看到了机会,服务协定可以从考虑存储器性能和能源效率的角度来改善显著的迭代执行。因此,接下来我们强调通过编译时分析,优化运行时内存管理。贡献是流编译器捕获整个程序存储器行为以产生用于运行时访问的高效内存布局。实验表明,我们的内存优化多达96%减少内存占用,同时匹配或改善StreamIt编译器缓存优化enabled.On另一方面的性能,同时也已经侧重于优化吞吐量工作显著体或延迟处理传感器数据流,几乎没有注意了能源效率。我们提出了一个准确的离线能源预测管理服务协定,充分利用管道结构和迭代执行自然搜索最节能的配料构w.r.t.模型最后期限约束。开发商预计将可视化的能量延迟权衡参数空间不运行时分析。评价结果显示在最坏情况下的预测误差约为尽管可变的应用工作负载7%和15能量%和等待时间。

著录项

  • 作者

    Farley Lai;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号