首页> 外文OA文献 >Applying Softcomputing for Copper Recovery in Leaching Process
【2h】

Applying Softcomputing for Copper Recovery in Leaching Process

机译:应用软件对浸出过程中的铜回收

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mining industry of the last few decades recognizes that it is more profitable to simulate model using historical data and available mining process knowledge rather than draw conclusions regarding future mine exploitation based on certain conditions. The variability of the composition of copper leach piles makes it unlikely to obtain high precision simulations using traditional statistical methods; however the same data collection favors the use of softcomputing techniques to enhance the accuracy of copper recovery via leaching by way of prediction models. In this paper, a predictive modeling contrasting is made; a linear model, a quadratic model, a cubic model, and a model based on the use of an artificial neural network (ANN) are presented. The model entries were obtained from operation data and data of piloting in columns. The ANN was constructed with 9 input variables, 6 hidden layers, and a neuron in the output layer corresponding to copper leaching prediction. The validation of the models was performed with real information and these results were used by a mining company in northern Chile to improve copper mining processes.
机译:过去几十年的采矿业认识到,使用历史数据和可用的采矿过程知识来模拟模型更有利可图,而不是根据某些条件得出关于未来矿山利用的结论。铜浸出桩组成的可变性使得使用传统统计方法不太可能获得高精度模拟;然而,相同的数据收集有利于使用软件计算技术通过预测模型通过浸出来提高铜回收的准确性。在本文中,制造了预测建模对比;提出了基于使用人工神经网络(ANN)的线性模型,二次模型,立方模型和模型。模型条目是从在列中导频的操作数据和数据的数据获得。 ANN由9个输入变量,6个隐藏层和与铜浸出预测对应的输出层中的神经元构成。使用实际信息进行模型的验证,这些结果由智利北部的矿业公司使用,以改善铜采矿过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号