首页> 外文OA文献 >Proposal and Assessment of a De-Identification Strategy to Enhance Anonymity of the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) in a Public Cloud-Computing Environment: Anonymization of Medical Data Using Privacy Models
【2h】

Proposal and Assessment of a De-Identification Strategy to Enhance Anonymity of the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) in a Public Cloud-Computing Environment: Anonymization of Medical Data Using Privacy Models

机译:提案和评估去识别策略,以提高公共云计算环境中的观察医疗成果伙伴关系共同数据模型(OMOP-CDM)的匿名性:使用隐私模型的医疗数据匿名化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundDe-identifying personal information is critical when using personal health data for secondary research. The Observational Medical Outcomes Partnership Common Data Model (CDM), defined by the nonprofit organization Observational Health Data Sciences and Informatics, has been gaining attention for its use in the analysis of patient-level clinical data obtained from various medical institutions. When analyzing such data in a public environment such as a cloud-computing system, an appropriate de-identification strategy is required to protect patient privacy. ObjectiveThis study proposes and evaluates a de-identification strategy that is comprised of several rules along with privacy models such as k-anonymity, l-diversity, and t-closeness. The proposed strategy was evaluated using the actual CDM database. MethodsThe CDM database used in this study was constructed by the Anam Hospital of Korea University. Analysis and evaluation were performed using the ARX anonymizing framework in combination with the k-anonymity, l-diversity, and t-closeness privacy models. ResultsThe CDM database, which was constructed according to the rules established by Observational Health Data Sciences and Informatics, exhibited a low risk of re-identification: The highest re-identifiable record rate (11.3%) in the dataset was exhibited by the DRUG_EXPOSURE table, with a re-identification success rate of 0.03%. However, because all tables include at least one “highest risk” value of 100%, suitable anonymizing techniques are required; moreover, the CDM database preserves the “source values” (raw data), a combination of which could increase the risk of re-identification. Therefore, this study proposes an enhanced strategy to de-identify the source values to significantly reduce not only the highest risk in the k-anonymity, l-diversity, and t-closeness privacy models but also the overall possibility of re-identification. ConclusionsOur proposed de-identification strategy effectively enhanced the privacy of the CDM database, thereby encouraging clinical research involving multiple centers.
机译:Backgroundde-Integing个人信息在使用个人健康数据进行二级研究时至关重要。由非营利组织观察卫生数据科学和信息学定义的观察医疗成果伙伴关系普通数据模型(CDM)一直在对各种医疗机构获得的患者级临床数据的使用来获得关注。在分析云计算系统的公共环境中的这种数据时,需要适当的去识别策略来保护患者隐私。客观的研究提出并评估了由若干规则组成的去识别策略以及隐私模型,例如K-Anonymity,L-多样性和T次接近。使用实际的CDM数据库进行评估所提出的策略。该研究中使用的CDM数据库由韩国Anam医院构建。使用ARX匿名框架与K-Anonymity,L-多样性和T-Hissisity隐私模型相结合进行分析和评估。结果是根据由观察卫生数据科学和信息学建立的规则构建的CDM数据库表现出较低的重新识别风险:DARB_EXPINSE表的数据集中的最高可识别记录速率(11.3%),重新识别成功率为0.03%。但是,因为所有表都包括100%的至少一个“最高风险”值,所以需要合适的匿名技术;此外,CDM数据库保留了“源值”(原始数据),其组合可以提高重新识别的风险。因此,本研究提出了增强的策略来解除源值,以显着减少k-匿名,l-多样性和t次特性隐私模型的最高风险,而且是重新识别的总体可能性。结论我们提出的去识别策略有效增强了CDM数据库的隐私,从而鼓励涉及多个中心的临床研究。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号