首页> 外文OA文献 >Locomotive drive system fault diagnosis based on dynamic self-adaptive blind source separation
【2h】

Locomotive drive system fault diagnosis based on dynamic self-adaptive blind source separation

机译:基于动态自适应盲源分离的机车驱动系统故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drive system is one of most important key equipment to guarantee safe and stable operation in locomotive. With time variation, unpredictability and nonstationary, fault source of drive system is not obtained by traditional fault diagnosis method. Blind source separation is a kind of method on source signals separation under transmission channel unknown instance. The method of Blind source separation based on variable metric empirical mode decomposition is proposed. Intrinsic mode function is built, redundancy factors are reduced, and recurrent neural network is used to adaptive blind separation. The method is verified by data analysis of on-line measuring. The results show that separation efficiency is improved and unaffected with iteration time in the process of fault information separation, which will be better for further fundamental research and provide technique support for the locomotive.
机译:驱动系统是最重要的关键设备之一,可保证机车安全稳定的操作。随着时间的变化,不可预测性和非间断,传统故障诊断方法无法获得驱动系统的故障源。盲源分离是在传输通道未知实例下源信号分离的一种方法。提出了基于可变度量经验模式分解的盲源分离方法。内在模式功能是构建的,减少了冗余因子,并且经常性神经网络用于自适应盲分离。通过在线测量的数据分析来验证该方法。结果表明,在故障信息分离过程中,分离效率得到改善和不受迭代时间的影响,这将更好地为进一步的基础研究提供更好的基础研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号