首页> 外文OA文献 >A Production-Inventory Model for a Deteriorating Item Incorporating Learning Effect Using Genetic Algorithm
【2h】

A Production-Inventory Model for a Deteriorating Item Incorporating Learning Effect Using Genetic Algorithm

机译:一种使用遗传算法结合学习效果的恶化项目的生产库存模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Demand for a seasonal product persists for a fixed period of time. Normallythe “finite time horizon inventory control problems” are formulated for this typeof demands. In reality, it is difficult to predict the end of a season precisely. It isthus represented as an uncertain variable and known as random planning horizon.In this paper, we present a production-inventory model for deteriorating items inan imprecise environment characterised by inflation and timed value of money andconsidering a constant demand. It is assumed that thetime horizon of the business period is random in nature and follows exponentialdistribution with a known mean. Here, we considered the resultant effect of inflationand time value of money as both crisp and fuzzy. For crisp inflation effect, thetotal expected profit from the planning horizon is maximized using genetic algorithm(GA) to derive optimal decisions. This GA is developed using Roulette wheelselection, arithmetic crossover, and random mutation. On the other hand when theinflation effect is fuzzy, we can expect the profit to be fuzzy, too! As for the fuzzyobjective, the optimistic or pessimistic return of the expected total profit is obtainedusing, respectively, a necessity or possibility measure of the fuzzy event. The GA wehave developed uses fuzzy simulation to maximize the optimistic/pessimistic returnin getting an optimal decision. We have provided some numerical examples andsome sensitivity analyses to illustrate the model.
机译:对季节性产品的需求持续到固定的一段时间。通常,“有限时间地平线库存控制问题”适用于这种类型的要求。实际上,很难预测一个季节结束。 ITSTHUS表示为一个不确定的变量并且称为随机规划地平线。本文提出了一种用于恶化物品的生产库存模型,其特征在于通过通货膨胀和货币的定时价值,并提供持续的需求。假设业务时期的轮廓地区是随机的,并用知名的平均值遵循指数分布。在这里,我们认为金钱的通胀和时间价值的结果效应,因为既清脆和模糊。为了脆化通胀效应,使用遗传算法(GA)来最大限度地利用计划地平线的预期利润来获得最佳决策。该GA是使用轮盘键选择,算术交叉和随机突变开发的。另一方面,当Theinflation效果是模糊的时,我们也可以预期利润是模糊的!至于Fuzzyobjective,预期总利润的乐观或悲观返回分别获得了模糊事件的必要性或可能性衡量标准。 GA Wehave开发使用模糊仿真来最大限度地提高最佳决定的乐观/悲观。我们提供了一些数值例子和有些敏感性分析来说明模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号