首页> 外文OA文献 >Image Super-Resolution Using Multi-Scale Space Feature and Deformable Convolutional Network
【2h】

Image Super-Resolution Using Multi-Scale Space Feature and Deformable Convolutional Network

机译:图像超分辨率使用多尺度空间特征和可变形卷积网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent researches on image super-resolution (SR) have achieved great progressing with the great development of convolutional neural networks (CNNs). However, existing CNNs usually adopt fixed filter structures and the convolutions just rely on the local information contained in the fixed receptive field. Above phenomena prevent high-level convolution layers from encoding semantics over spatial locations and largely limits the learning capacity of CNNs. What’s more, many methods simply used a single-size feature map and failed to consider the spatial information, thereby these results also are unsatisfactory. To address these problems, in this paper, a network with multi-scale space features and deformable convolutional (MulSSD) is presented to further improve the reconstruction accuracy. Specifically, a multi-scale space features compressed block containing the deformable convolutional layer is proposed, which can augment the spatial sampling locations and incorporate the multi-scale space compression features and adaptively adjust the sampling grid and receptive fields. In addition, the design of symmetrical combinations make the information can be smoothly propagated through multiple channels during the training, which effectively improves the training efficiency. Extensive experiments on benchmark datasets validate that the proposed method achieves outperforming quantitative and qualitative performance. And the experimental results also proved that our proposed MulSSD can reconstruct high-quality high-resolution (HR) images at a relatively fast speed and outperform other methods by a large margin.
机译:最近对图像超分辨率(SR)的研究实现了卷积神经网络(CNNS)的巨大发展进展。然而,现有的CNN通常采用固定滤波器结构,并依赖于固定接收领域所含的本地信息的卷曲。上面的现象可以防止高级卷积层在空间位置编码语义,并主要限制CNN的学习能力。更重要的是,许多方法只是使用单尺寸的特征映射,并且无法考虑空间信息,从而这些结果也不令人满意。为了解决这些问题,本文提出了一种具有多尺度空间特征和可变形卷积(MUSSD)的网络,以进一步提高重建精度。具体地,提出了一种包含可变形卷积层的压缩块的多尺度空间特征,其可以增强空间采样位置并结合多尺度空间压缩特征,并自适应地调整采样网格和接收领域。另外,对称组合的设计使得该信息可以在训练期间通过多个通道顺利地传播,这有效提高了训练效率。基准数据集的广泛实验验证了所提出的方法实现了优于定量和定性性能。实验结果还证明,我们所提出的MUSSDD可以以相对快速的速度重建高质量的高分辨率(HR)图像,并通过大的余量来实现其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号