首页> 外文OA文献 >On Robust Sequential Analysis - Kiefer-Weiss Optimal Testing under Interval Probability
【2h】

On Robust Sequential Analysis - Kiefer-Weiss Optimal Testing under Interval Probability

机译:鲁棒序贯分析 - 区间概率下的松白优化检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Usual sequential testing procedures often are very sensitive against even small deviations from the `ideal model' underlying the hypotheses. This makes robust procedures highly desirable. To rely on a clearly defined optimality criterion, we incorporate robustness aspects directly into the formulation of the hypotheses considering the problem of sequentially testing between two interval probabilities (imprecise probabilities). We derive the basic form of the Kiefer-Weiss optimal testing procedure and show how it can be calculated by an easy-to-handle optimization problem. These results are based on the reinterpretation of our testing problem as the task to test between nonparametric composite hypotheses, which allows to adopt the framework of Pavlov (1991). From this we obtain a general result applicable to any interval probability field on a finite sample space, making the approach powerful far beyond robustness considerations, for instance for applications in artificial intelligence dealing with imprecise expert knowledge.
机译:通常的顺序测试程序通常对假设基础的“理想模型”即使很小的偏差也非常敏感。这使得健壮的过程非常可取。为了依赖明确定义的最优性准则,我们考虑了两个区间概率(不精确概率)之间顺序测试的问题,将鲁棒性方面直接纳入假设的制定中。我们推导了Kiefer-Weiss最优测试过程的基本形式,并展示了如何通过易于处理的优化问题来计算它。这些结果是基于对我们的检验问题的重新解释,该检验问题是检验非参数合成假设之间的任务,从而可以采用Pavlov(1991)的框架。由此,我们获得了适用于有限样本空间上任何间隔概率场的一般结果,从而使该方法功能强大,远远超出了鲁棒性考虑,例如用于处理不精确专家知识的人工智能。

著录项

  • 作者

    Augustin Thomas; Pöhlmann S.;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"it","name":"Italian","id":21}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号