首页> 外文OA文献 >Principal Component Analysis-Based Anatomical Motion Models For Use In Adaptive Radiation Therapy Of Head And Neck Cancer Patients
【2h】

Principal Component Analysis-Based Anatomical Motion Models For Use In Adaptive Radiation Therapy Of Head And Neck Cancer Patients

机译:基于主成分分析的解剖运动模型用于头颈癌患者的自适应放射治疗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (Hu26N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment.Methods: Planning CT (pCT) images of Hu26N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients’ actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution.Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into the higher dose volumes during the radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage due to the large compression factor (CF) used to acquire DVFs.Conclusion: Leading EDVFs from both PCA approaches have the potential to capture systematic anatomical changes during Hu26N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable than SPCA at capturing systematic changes, enabling dosimetric consequences to be projected to the future treatment fractions based on trends established early in a treatment course, or, potentially, based on population models. This work showed that PCA has a potential in identifying the major mode of anatomical changes during the radiotherapy course and subsequent use of this information in future dose predictions is feasible. Use of smaller CF values for DVFs is preferred, otherwise anatomical motion will be underestimated.
机译:目的:从头颈部(H u26N)患者的每日锥形束CT(CBCT)建立解剖学变化的标准和常规主成分分析(PCA)模型,评估其在适应性放射治疗(ART)中的潜在用途,并方法:对H u26N患者的计划CT(pCT)图像进行人工变形以创建“数字体模”图像,以模拟放射治疗(RT)期间的系统解剖变化。人工变形紧密反映了患者的实际变形,并进行了插值以生成35个合成CBCT,代表了超过35个部位的解剖结构。在pCT与合成CBCT(即数字体模)之间以及pCT与临床CBCT之间获取了变形矢量场(DVF)。从这些合成的和临床的DVF集构建了患者特定的标准PCA(SPCA)和常规PCA(RPCA)模型。假设具有最大特征值的特征向量或特征DVF(EDVF)可以捕获治疗过程中的主要解剖变形。使用建模的解剖结构来评估相对于计划剂量分布的剂量偏差。结果:PCA模型可实现可变的结果,具体取决于解剖结构变化的大小和位置。随机更改会阻止或降低SPCA检测潜在系统更改的能力。 RPCA能够在随机的馏分-馏分变化的背景下检测到较小的系统变化,因此比SPCA在治疗早期捕获系统变化方面更为成功。 SPCA模型在模拟临床患者图像的系统变化方面不太成功,与合成的CBCT相比,它包含了更大范围的随机运动,而常规化方法能够提取主要的运动模式。对于剂量评估,已经显示,由于腮腺的收缩和在放疗过程中转移到较高的剂量范围,因此模拟的剂量分布与腮腺的计划剂量不同。由于用于获取DVF的巨大压缩因子(CF),建模的DVH仍然低估了腮腺萎缩的影响。结论:两种PCA方法中领先的EDVF都有可能在H u26N放疗期间系统性变化足够大时捕获系统性解剖变化。关于随机的分数到分数变化。在所有情况下,RPCA方法在捕获系统变化方面似乎都比SPCA更可靠,从而可以根据治疗过程中早期建立的趋势或潜在地基于人群模型,将剂量学后果预测到未来的治疗分数中。这项工作表明,PCA具有确定放射治疗过程中解剖结构变化的主要模式的潜力,并且在将来的剂量预测中随后使用此信息是可行的。 DVF最好使用较小的CF值,否则解剖运动会被低估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号