首页> 外文OA文献 >Identifying the solid-electrolyte interphase formed on lithium metal electrodes using room temperature ionic liquid based electrolytes.
【2h】

Identifying the solid-electrolyte interphase formed on lithium metal electrodes using room temperature ionic liquid based electrolytes.

机译:使用室温离子液体电解质识别在锂金属电极上形成的固体电解质界面。

摘要

Lithium metal is attractive for secondary cells as it has the highest theoretical voltage and electrochemical equivalence, 3860 Ah kg-1. However, dendrite formation while Li0 is charged/discharged in batteries causes short circuits, overheating and explosions. To resolve this, several room temperature ionic liquids (RTIL) electrolytes are receiving considerable attention due to their advantageous safety benefits including high thermal stabilities and/or negligible vapour pressure. However, there is a lack of information regarding the solid-electrolyte interphase (SEI) which passivates the surface of the lithium metal when using RTIL electrolytes. Electrodeposition/electrodissolution of Ag onto glassy carbon via cyclic voltammetry (CV) was proven to be effective from two RTILs, 1 butyl 2 methylimidazolium tetrafluoroborate ([BMIm+][BF4 ]) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4mPyr+][TFSI ]) following nucleation-growth kinetics with close to full reversibility without side reactions. Chronoamperometry (CA) data indicated that Ag electrodeposition follows an instantaneous nucleation and growth type mechanism at all reduction potentials in RTIL. Trace water induced a progressive nucleation and growth type mechanism in [C4mPyr+][TFSI ] which significantly altered the morphology of the resultant electrodeposit. Lithium electrodeposition/electrodissolution was undertaken in N propyl N methylpyrrolidinium bis(fluorosulfonyl)imide ([C3mPyr+][FSI ]) at Pt and Li metal electrodes. Salts added include lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium tetrafluoroborate and (LiBF4), lithium hexafluorophosphate and (LiPF6), and lithium hexafluoroarsenate (LiAsF6). At Pt, CV data showed quasi reversibility for the LiFSI system with &80% cuolombic efficiency. Chronoamperometric data indicated instantaneous nucleation and growth type mechanism for Li electrodeposition from both the LiTFSI and LiBF4 electrolytes. At Li, CV behaviour was complicated by rapid chemical reaction between electrode and electrolyte resulting in the electrode cycling with an order of stability as follows: LiBF4&LiFSI&LiAsF6&LiTFSI&LiPF6 according to current amplitude and signal-to-noise ratio. Instantaneous nucleation and growth type mechanism was evidenced from the LiTFSI and LiPF6 electrolytes. SEI formation in neat RTIL was a dynamic process initially smoothing the surface with adhered RTIL, roughening after 12 days, culminating in smoothened surfaces after 18 days of reaction. Both cation and anion are reduced providing SEI species (LiF, LiOH) and/or entrapped RTIL moieties (methylpyrrolidone, NSO2). Salt addition affected changes in resultant SEI morphology and composition. The chemically formed SEI increases resistance of the Li electrode and acts as a passivating film protecting thermodynamically unstable underlying bulk Li metal. Upon cycling an SEI formed chemically after 12 hours, 12 or 18 days in symmetrical cells it was determined that lithium electrode resistance can be reduced. Best cycling results were obtained when cycling a 12 day SEI with each electrolyte, successfully completing 2000 charge-discharge cycles at 1.0 mA cm 2. Stability of these cells was as follows: LiBF4&LiFSI&LiAsF6&LiPF6&LiTFSI. The 18 day SEI pre treatment was unable to achieve 50 cycles prior to cell failure. However, post mortem analysis confirmed that no dendrite formation was observed using [C3mPyr+][FSI ] electrolytes. The work herein supports that the N propyl N methylpyrrolidinium bis(fluorosulfonyl)imide RTIL with a variety of lithium salts can be used to construct and cycle cells effectively. In fact the properties of these cells appear to be superior to other RTIL based systems which is attributed partly to the SEI formed prior to, and during cycling.
机译:锂金属对二次电池具有吸引力,因为它具有最高的理论电压和电化学当量,为3860 Ah kg-1。但是,在电池中对Li0进行充电/放电时,枝晶形成会导致短路,过热和爆炸。为了解决这个问题,几种室温离子液体(RTIL)电解质由于其有利的安全益处,包括高的热稳定性和/或可忽略的蒸气压而受到了广泛的关注。然而,缺乏关于当使用RTIL电解质时使锂金属的表面钝化的固体电解质中间相(SEI)的信息。事实证明,通过循环伏安法(CV)将银电沉积/电溶解在玻璃碳上对两种RTIL有效,分别是1丁基2甲基咪唑四氟硼酸酯([BMIm +] [BF4])和N-丁基-N-甲基吡咯烷鎓双(三氟甲烷磺酰基)酰亚胺( [C4mPyr +] [TFSI])遵循成核-生长动力学,几乎完全可逆,没有副反应。计时电流法(CA)数据表明,在RTIL的所有还原电位下,Ag电沉积均遵循瞬时成核和生长型机理。痕量水在[C4mPyr +] [TFSI]中诱导了渐进式成核和生长型机制,这显着改变了所得电沉积的形态。锂电沉积/电溶解是在Pt和Li金属电极的N丙基N甲基吡咯烷鎓双(氟磺酰基)酰亚胺([C3mPyr +] [FSI])中进行的。加入的盐包括双(氟磺酰基)酰亚胺锂(LiFSI),双(三氟甲磺酰基)酰亚胺锂(LiTFSI),四氟硼酸锂和(LiBF4),六氟磷酸锂和(LiPF6)以及六氟砷酸锂(LiAsF6)。在Pt,CV数据显示LiFSI系统的准可逆性,具有> 80%的库仑效率。计时安培数据表明,来自LiTFSI和LiBF4电解质的Li电沉积的瞬时成核和生长类型机理。在Li处,电极和电解质之间的快速化学反应使CV行为复杂化,导致电极以如下的稳定性顺序循环:根据电流幅度和信噪比,LiBF 4> LiFSI> LiAsF 6> LiTFSI> LiPF 6。 LiTFSI和LiPF6电解质证明了瞬时成核和生长类型的机制。纯净RTIL中SEI的形成是一个动态过程,最初是通过粘附的RTIL使表面光滑,在12天后变粗糙,在反应18天后达到光滑表面。阳离子和阴离子都被还原,从而提供SEI种类(LiF,LiOH)和/或截留的RTIL部分(甲基吡咯烷酮,NSO2)。加盐会影响所得SEI形态和组成的变化。化学形成的SEI会增加Li电极的电阻,并充当钝化膜,保护热力学不稳定的下面的块状Li金属。在对称电池中经过12小时,12或18天后化学循环形成的SEI循环后,确定可以降低锂电极的电阻。当用每种电解质循环12天的SEI时,在1.0mA cm 2下成功完成2000次充电-放电循环时,获得了最佳的循环结果。这些电池的稳定性如下:LiBF 4> LiFSI> LiAsF 6> LiPF 6> LiTFSI。 18天SEI预处理在细胞衰竭之前无法达到50个周期。然而,事后分析证实,使用[C3mPyr +] [FSI]电解质未观察到枝晶形成。本文的工作支持具有各种锂盐的N丙基N甲基吡咯烷鎓双(氟磺酰基)酰亚胺RTIL可用于有效地构建和循环细胞。实际上,这些电池的性能似乎优于其他基于RTIL的系统,这部分归因于循环之前和循环过程中形成的SEI。

著录项

  • 作者

    Basile A;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号