首页> 外文OA文献 >Energy absorption properties of cellular materials with maximum bulk modulus
【2h】

Energy absorption properties of cellular materials with maximum bulk modulus

机译:具有最大体积模量的多孔材料的能量吸收特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellular materials possess excellent mechanical, physical and thermal properties compared to solid materials. They are widely used as an energy absorber in the form of packaging foams to protect products from severe acceleration and deceleration in collision or impact events. The properties of cellular materials rely on their solid distribution within their periodic unit cell. In the last few decades, a large amount of research and studies have been conducted on metallic foams, honeycombs, and other cellular composites. However, only limited amount of research has been conducted on the 3D periodic cellular structures. Particularly, the practical research for the relationship between the specific energy absorption and bulk modulus of a 3D periodic cellular materials is the main concern. The cellular materials with optimized bulk modulus are expected to have merits for use in energy absorption applications. Unfortunately, there is few research conducted to investigate this type of materials. The aim of this thesis is to understand the specific energy absorption, compressive strength and deformation pattern of the 3D periodic cellular materials with optimized bulk modulus, i.e., Schwarz Primitive Structures, which possesses optimal mechanical, thermal and flow properties. Inspired by their optimum bulk modulus, this study aims to investigate the energy absorption capacity of 3D periodic Schwarz primitive structure under uniaxial compression as well as under triaxial compression. The experimentally validated Finite Element Models (FEM) is employed to simulate their deformation features. The mechanical properties of 3D periodic Schwarz primitive structure are studied in uniaxial and hydrostatic compression with strain control. The deformation process and corresponding stress-strain curves are presented. The nonlinear increasing trend of mechanical properties with respect to relative density has been obtained. The specific energy absorption of the 3D periodic Schwarz primitive structure. The merits of energy absorption capacity of 3D periodic Schwarz primitive structure under compression is confirmed by comparison with other common cellular material of identical relative density. It can be concluded from those results that the cellular materials have the ideal energy absorption features under uniaxial compression and have superior energy absorption capacity under triaxial compression. Thus, they are ideal for industry packaging and other energy absorption applications.
机译:与固体材料相比,多孔材料具有出色的机械,物理和热性能。它们以包装泡沫的形式被广泛用作能量吸收剂,以保护产品在碰撞或冲击事件中免受剧烈的加速和减速。细胞材料的特性取决于它们在其周期性晶胞内的固体分布。在过去的几十年中,对金属泡沫,蜂窝和其他多孔复合材料进行了大量的研究。但是,仅对3D周期性细胞结构进行了有限的研究。特别地,对于3D周期多孔材料的比能量吸收和体积模量之间的关系的实际研究是主要关注的问题。期望具有优化的体积模量的蜂窝材料具有在能量吸收应用中使用的优点。不幸的是,很少进行研究来研究这种类型的材料。本文的目的是了解具有优化的体模量的3D周期性多孔材料的比能量吸收,抗压强度和变形模式,即具有最佳机械,热和流动性能的Schwarz原始结构。受其最佳体积模量的启发,本研究旨在研究3D周期性Schwarz基本结构在单轴压缩以及三轴压缩下的能量吸收能力。经过实验验证的有限元模型(FEM)用于模拟其变形特征。在应变控制的单轴和静水压缩中研究了3D周期性Schwarz基本结构的力学性能。给出了变形过程和相应的应力-应变曲线。已经获得了机械性能相对密度的非线性增长趋势。 3D周期性Schwarz基本结构的比能量吸收。通过与具有相同相对密度的其他常见细胞材料进行比较,可以确定3D周期性Schwarz原始结构在压缩状态下的能量吸收能力。从这些结果可以得出结论,多孔材料在单轴压缩下具有理想的能量吸收特征,而在三轴压缩下具有优异的能量吸收能力。因此,它们是工业包装和其他能量吸收应用的理想选择。

著录项

  • 作者

    Liang Y;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号