首页> 外文OA文献 >Application of high-throughput sequencing technologies to determine the molecular basis of drought tolerance in chickpea (Cicer arietinum L.)
【2h】

Application of high-throughput sequencing technologies to determine the molecular basis of drought tolerance in chickpea (Cicer arietinum L.)

机译:应用高通量测序技术确定鹰嘴豆(Cicer arietinum L.)耐旱性的分子基础

摘要

Drought stress is one of the most important abiotic stresses, which adversely effects chickpea (Cicer arietinum L.) production across the globe. It is responsible for substantial yield loses up to 50%, which led to stagnated productivity of chickpea for the past six decades. In chickpea, terminal drought stress leads to significant reduction in the seed yield (58-95%). The deleterious effects of terminal drought stress are mainly manifested as increased flower and pod abortion, reduced pod production, and reduced seed size. For the past 20 years, root traits such as deep and profuse rooting system have been proposed as a main breeding target for improving drought tolerance in chickpea. Due to the complexity of drought stress, traditional breeding approaches have been largely unsuccessful in exploiting root traits for developing tolerant chickpea cultivars. Drought tolerance is a complex quantitative trait, which is influenced by number of genetic and environmental interactions. It is mainly controlled by the several drought responsive genes or gene networks and shows genotypic divergence depending on the plant phenology. In addition, plants show genotype-, tissue- and stage-specific variations during their response to drought stress. Hence, understanding the physiological and genetic basis of drought stress in a genotype-, tissue- and stage-specific manner is essential to decipher the complexity of drought stress. Till date, no study was focused on deciphering the molecular mechanisms that underlie root and reproductive growth during drought stress in chickpea. Therefore, this study was designed to employ RNA-Sequencing (RNA-Seq) for investigating genome-wide transcriptome changes in the roots and reproductive tissues during different developmental stages in response to drought stress. Further, the study also investigated the role of drought responsive microRNAs during reproductive development. This will improve an overall understanding of molecular mechanisms that control root and reproductive development during drought stress. To enable the employment of RNA-Seq, two chickpea genotypes with contrasting drought tolerance (ICC 8261 – drought tolerant; ICC 283 – drought sensitive) were challenged with drought stress. Analysis of physiological data revealed a phenotypic divergence in the root traits of tolerant and sensitive genotypes. Further, RNA-Seq revealed significant transcriptome changes in the roots of both genotypes during three stages of plant development (VS – Vegetative stage; RTS – Reproductive Transition stage (ICC 283/Drought susceptible genotype); RS – Reproductive stage). Gene enrichment and pathway analysis was performed to identify key molecular mechanisms that underlie phenotypical changes observed in the roots of both genotypes. Resulting analysis indicated a genotype- and stage-specific activation of gene or gene networks involved in transcriptional regulation (AP2/ERF, bHLH, C2C2-Dof, DREB, MYB), signal transduction (MEKK1, CPK3, PERK4, HSL2, CIPK1), ROS (Reactive Oxygen Species) production (RBOHD, RBOHH) and scavenging (GST, GST-L1-like, DHAR3, PER47, PER72-like), transport facilitation (ABCB19, ABCB12-like, ABCB15-like, ABCG22-like, PIP2-1, TIP2-2), nodulation (LYK3, CLAVATA1) and jasmonate biosynthesis (LOX, AOC3). Further, stage-specific activation/repression of components involved in phytohormone signalling such as Abscisic acid (NCED3, CYP707A3, PYL4), Auxin (PIN), Cytokinin (IPT5, AHP4) led us to propose a model of hormonal cross-talk that might lead to strong root growth during early stages and conservative root growth during reproductive stages in tolerant genotype during drought stress. To explore the molecular basis of reproductive development in tolerant and sensitive genotypes, a physiological assay was performed to challenge the plants with drought stress. Reproductive tissues collected from five different stages (Shoot Apical Meristem – SAM; Flower Bud – FB; Partially Opened Flower – POF; Fully Opened Flower – FOF; Young Pod - YP) were used to perform RNA-Seq and analyse genome-wide transcriptome changes in both genotypes. Further, GO, KEGG enrichment and network analysis was performed to decipher the genes and gene pathways involved in reproductive growth under drought stress. The results indicated genotype- and stage-specific activation and repression of multiple genes families involved in dynamic signal transduction (NPK1, YODA, CPK17, SUB3, SUB5, PRK1, PRK3, PRK4), transcriptional regulatory networks (WRKY/ERF/STZ module, ARF19, NAC029, PERANTHIA, CRABSCLAW), pollen development (b-fructofuranosidases, ACOS5, CYP703A2, CYP704B1, FAR2, ABCG26, CalS5), pod development (SWEET3, EXO) and circadian clock function (LHY, ELF4) that may control reproductive success during drought stress. Additionally, genotype-specific regulation of Auxin (AUX1, ARF2, XTH22, PID) and Jasmonate (LOX2.1-2, TIFY-10A, MYB21) signalling during FB and POF may positively regulate flower development, while ABA-dependent (NCED1, AB15, RD29B) and –independent (DREB1A) signalling during YP might provide molecular basis to help reduce pod abortion in chickpea. During reproductive growth, microRNAs (miRNAs) control various aspects such as vegetative to reproductive phase transition, meristem initiation, flower development, floral organ growth and seed development. However, drought induced regulation of miRNAs during reproductive development has never been evaluated in chickpea. To explore the miRNA regulation, small RNA-component was sequenced during three reproductive stages (SAM, POF, YP) from the same tissue that was used for transcriptome sequencing. This allowed us to perform integrated miRNA mRNA expression analysis to identify putative regulatory modules that control reproductive development under drought stress. The results indicated differential regulation of 287 miRNAs in treatment-, genotype- and stage-specific manner. The miRNAs were involved in controlling the targets related to abiotic stimulus, signal transduction, transport facilitation, floral organ growth (pollen and pistil development), secondary metabolism and phytohormone signalling pathways. Genotype- and stage-specific activation/repression of regulatory modules controlling transport activity (Ca-miR7716-5p:TIP4-1, Ca-miR5227:KPNB1, Ca-miR1130:ABCG3, Ca-miR166g-5p:CHX20, Ca-miR8657a:ABCB21-like), reproductive transition and flower development (Ca-miR166i:ATHB14/ATHB15/REVOLUTA, miR167d-5p:ARF6/ARF8, Ca-miR319q:TCP4-like, Ca-miR159c:GAMYB-like and Ca-miR172c:APETALA2/AP2-like), floral organ growth (Ca-miR390b:EMS1, Ca-miR39h:GRF1-like/GRF4/GRF4-like/GRF9, Ca-miR2916b-5p:POLLENLESS3/GSL12-like) might play a critical role in reproductive success during drought stress. The study also identified 16 novel miRNAs that were involved in response to ethylene stimulus, response to abiotic stimulus, reproductive development, kinase and transporter activities. Finally, genotype-specific expression of two regulatory modules involved in ABA-dependent (Ca-miR166h-3p:ABI5) and –independent signalling (Ca-miR2912a:CYP707A1, Ca-miR6267a:ATAF1) during YP may form the molecular basis for normal pod development during drought stress. In summary, the potential gene or gene networks identified in this study were based on their role in other plant species. Hence, functional analyses of candidate genes and miRNAs using transgenic over-expression or CRISPR-Cas9 mediated gene editing will provide a better understanding of their role in enhancing drought tolerance in chickpea. Furthermore, the candidate genes can be used in conjunction with genome-wide association study (GWAS), QTL mapping for rapid dissection of drought stress tolerance. Nevertheless, this study is the first documentation of genotype- and stage-specific transcriptome profiling of chickpea roots and reproductive tissues in response to drought stress using RNA-Seq. Further, expression profiling of miRNAs using small RNA-Seq allowed us to identify putative regulatory modules involved in maintaining normal reproductive development under drought stress. This will further aid in better understanding of complex molecular mechanisms that control drought stress tolerance in chickpea.
机译:干旱胁迫是最重要的非生物胁迫之一,其对全球鹰嘴豆(Cicer arietinum L.)的生产产生不利影响。它导致大量产量损失高达50%,这导致鹰嘴豆在过去六十年中停滞不前。在鹰嘴豆中,终极干旱胁迫导致种子产量大幅下降(58-95%)。终端干旱胁迫的有害影响主要表现为花和豆荚流产增加,豆荚产量减少和种子大小减小。在过去的20年中,已经提出了诸如深根和大量生根的根系性状作为提高鹰嘴豆抗旱性的主要育种目标。由于干旱胁迫的复杂性,传统的育种方法在利用根系性状发展耐性鹰嘴豆品种方面一直没有成功。耐旱性是一个复杂的数量性状,受遗传和环境相互作用的数量影响。它主要受几种干旱反应基因或基因网络控制,并根据植物物候表现出基因型差异。另外,植物在对干旱胁迫的反应过程中表现出基因型,组织和阶段特异性变化。因此,以基因型,组织和阶段特定的方式了解干旱胁迫的生理和遗传基础对于破译干旱胁迫的复杂性至关重要。迄今为止,尚无研究集中于揭示鹰嘴豆干旱胁迫期间根系和生殖生长的分子机制。因此,本研究旨在利用RNA测序(RNA-Seq)来研究干旱胁迫下不同发育阶段根和生殖组织中全基因组转录组的变化。此外,该研究还研究了干旱响应性microRNA在生殖发育过程中的作用。这将全面了解控制干旱胁迫期间根系和生殖发育的分子机制。为了能够使用RNA-Seq,两种具有不同耐旱性的鹰嘴豆基因型(ICC 8261-耐旱; ICC 283-干旱敏感)受到干旱胁迫的挑战。生理数据分析显示,在耐受和敏感基因型的根性状上存在表型差异。此外,RNA-Seq在植物发育的三个阶段(VS-营养阶段; RTS-生殖过渡阶段(ICC 283 /干旱易感基因型); RS-生殖阶段)期间揭示了两种基因型根部的显着转录组变化。进行了基因富集和途径分析,以确定了在两种基因型的根中观察到的表型变化基础的关键分子机制。结果分析表明,涉及转录调控(AP2 / ERF,bHLH,C2C2-Dof,DREB,MYB),信号转导(MEKK1,CPK3,PERK4,HSL2,CIPK1)的基因或基因网络的基因型和阶段特异性激活, ROS(活性氧)的产生(RBOHD,RBOHH)和清除(GST,GST-L1样,DHAR3,PER47,PER72样),运输便利化(ABCB19,ABCB12样,ABCB15样,ABCG22样,PIP2 -1,TIP2-2),结瘤(LYK3,CLAVATA1)和茉莉酸酯生物合成(LOX,AOC3)。此外,参与植物激素信号传导的组分(如脱落酸(NCED3,CYP707A3,PYL4),生长素(PIN),细胞分裂素(IPT5,AHP4))的阶段特异性激活/抑制导致我们提出了一种可能与激素相互作用的模型导致干旱胁迫下耐性基因型的早期强劲根系生长和生殖阶段保守根系生长。为了探索耐受和敏感基因型生殖发育的分子基础,进行了生理测定以挑战干旱胁迫下的植物。从五个不同阶段收集的生殖组织(射出顶端分生组织SAM;花芽FB;部分开放的花朵POF;完全开放的花朵FOF;幼荚-YP)用于进行RNA测序和分析基因组两种基因型的全转录组变化。此外,进行了GO,KEGG富集和网络分析,以破译干旱胁迫下与生殖生长有关的基因和基因途径。结果表明,涉及动态信号转导的多个基因家族(NPK1,YODA,CPK17,SUB3,SUB5,PRK1,PRK3,PRK4)的基因型和阶段特异性激活和抑制,转录调控网络(WRKY / ERF / STZ模块, ARF19,NAC029,PERANTHIA,CRABSCLAW),花粉发育(b-果糖呋喃糖苷酶,ACOS5,CYP703A2,CYP704B1,FAR2,ABCG26,CalS5),豆荚发育(SWEET3,EXO)和昼夜节律功能(LHY,ELF4)可以控制成功在干旱胁迫期间。此外,生长素(AUX1,ARF2,XTH22,PID)和茉莉酸酯(LOX2.1-2)的基因型特异性调节,FB和POF期间的TIFY-10A,MYB21)信号可能正调控花的发育,而YP期间的ABA依赖性(NCED1,AB15,RD29B)和独立(DREB1A)信号可能提供分子基础,以帮助减少鹰嘴豆的荚果流产。在生殖生长过程中,microRNA(miRNA)控制着各个方面,例如从营养到生殖的相变,分生组织引发,花发育,花器官发育和种子发育。但是,从未在鹰嘴豆中评估干旱引起的生殖发育过程中miRNA的调控。为了探索miRNA的调控,在三个生殖阶段(SAM,POF,YP)中,从用于转录组测序的同一组织中对小RNA成分进行了测序。这使我们能够进行整合的miRNA mRNA表达分析,以鉴定在干旱胁迫下控制生殖发育的假定调控模块。结果表明以治疗,基因型和阶段特异性的方式差异调节287个miRNA。 miRNA参与控制与非生物刺激,信号转导,运输促进,花器官生长(花粉和雌蕊发育),次级代谢和植物激素信号通路有关的靶标。控制运输活性的调控模块的基因型和阶段特异性激活/抑制(Ca-miR7716-5p:TIP4-1,Ca-miR5227:KPNB1,Ca-miR1130:ABCG3,Ca-miR166g-5p:CHX20,Ca-miR8657a:类似于ABCB21),生殖过渡和花朵发育(Ca-miR166i:ATHB14 / ATHB15 / REVOLUTA,miR167d-5p:ARF6 / ARF8,Ca-miR319q:TCP4-like,Ca-miR159c:GAMYB-like和Ca-miR172c:APETALA2 / AP2样),花器官生长(Ca-miR390b:EMS1,Ca-miR39h:GRF1样/ GRF4 / GRF4-like / GRF9,Ca-miR2916b-5p:POLLENLESS3 / GSL12样)可能在其中起着关键作用干旱胁迫下的繁殖成功。这项研究还确定了16种新颖的miRNA,它们参与了对乙烯刺激,非生物刺激,生殖发育,激酶和转运蛋白活性的反应。最后,YP期间参与ABA依赖性(Ca-miR166h-3p:ABI5)和非依赖性信号转导(Ca-miR2912a:CYP707A1,Ca-miR6267a:ATAF1)的两个调节模块的基因型特异性表达可能构成干旱胁迫下豆荚正常发育。总之,在这项研究中确定的潜在基因或基因网络是基于它们在其他植物物种中的作用。因此,使用转基因过表达或CRISPR-Cas9介导的基因编辑功能对候选基因和miRNA进行功能分析将使人们更好地了解它们在增强鹰嘴豆抗旱性中的作用。此外,候选基因可以与全基因组关联研究(GWAS),QTL作图结合使用,以快速解剖干旱胁迫耐受性。但是,这项研究是使用RNA-Seq对干旱胁迫下鹰嘴豆根和生殖组织的基因型和阶段特异性转录组谱进行分析的第一份文献。此外,使用小RNA-Seq进行miRNA的表达谱分析使我们能够鉴定出在干旱胁迫下维持正常生殖发育的假定调控模块。这将进一步有助于更好地理解控制鹰嘴豆耐旱性的复杂分子机制。

著录项

  • 作者

    Bhaskarla V;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号