首页> 外文OA文献 >Using nanofluids for proton exchange membrane fuel cell (PEMFC) cooling in automotive applications
【2h】

Using nanofluids for proton exchange membrane fuel cell (PEMFC) cooling in automotive applications

机译:在汽车应用中使用纳米流体进行质子交换膜燃料电池(pEmFC)冷却

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main focus of this PhD research project was to experimentally and theoretically study the effects of using nanofluids as PEMFCs coolants on the electrical and thermal performances of PEMFCs system with a view to applying PEMFCs in automotive applications. To study the PEMFCs cooling system theoretically, a computer simulation model has been developed consisting of the sub-models of PEMFCs stack, radiator, water pump and coolants in Matlab. All the sub-models were combined to simulate the overall performance of the PEMFC cooling systems (with different liquids used as coolants). The model can be applied for any capacity PEMFCs cooling system and able to size the radiator, convection heat transfer coefficient of the coolants and pumping power required to circulate the coolants in the cooling loop. The convection heat transfer coefficient enhancement predicted by the theoretical computer simulation model was found to be ~60% for 0.05 vol% concentration of nanofluids, while for 0.5 vol% concentration the enhancement was estimated to be ~74%. As the results of this enhancement, the reduction of the frontal area of the radiator was found to be ~26% by using 0.05 vol% concentration of nanofluids while this could only be increased slightly (i.e. further ~1%) for 0.5 vol% concentration of nanoparticles. With 0.05 vol% concentration, the required pumping power for circulating the required coolants (i.e. nanofluids) for extracting 2.1 kW heat from PEMFC increased by ~5% compared with when 50/50 water-EG was used as coolant in the system. This pumping power showed negligible further increase by increasing the concentration of nanoparticles from 0.05 vol% to 0.5 vol%. Along with the theoretical prediction of the thermo-physical properties of nanofluids, the sample nanofluids were prepared in the RMIT chemical engineering lab and their electrical and thermo-physical (i.e. thermal conductivity, viscosity, specific heat and density) properties were measured experimentally. The experimental data were used in the theoretical computer simulation model to compare the outputs of the model with those results obtained by using theoretical predicted properties of nanofluids. The experimental rig was developed based on the 2.4 kW PEMFCs with a view to investigating the electrical and thermal performances of the PEMFCs system. With a view to investigating the electrical and thermal performances of PEMFC system, the PEMFCs was run first with this 50/50 water-EG. Following the experiment with 50/50 water-EG, more experiments were conducted with 0.05 vol% and 0.5 vol% ZnO nanofluids, 0.5 vol% TiO2 and 0.5 vol% Al2O3 nanofluids. During the experiments with various coolants, the coolant mass flow rate and fuel cell inlet temperature were kept constant at the same operating point (i.e. 50 A) of the fuel cells. No variations in the polarisation curves were found while using 50/50 water-EG and different types of nanofluids indicating no electricity leakage due to using nanofluids as coolants. On the other hand, the experimentally obtained thermal performance data were used to validate the computer simulation results. The computer simulation model results were matched with the experimentally obtained PEMFCs results with acceptable errors (i.e. below 10%).
机译:该博士研究项目的主要重点是通过实验和理论研究使用纳米流体作为PEMFCs冷却剂对PEMFCs系统的电气和热性能的影响,以期将PEMFCs用于汽车应用。为了从理论上研究PEMFC的冷却系统,建立了一个计算机仿真模型,该模型包括Matlab中PEMFC烟囱,散热器,水泵和冷却剂的子模型。组合了所有子模型,以模拟PEMFC冷却系统的总体性能(使用不同的液体作为冷却剂)。该模型可用于任何容量的PEMFC冷却系统,并能够确定散热器的尺寸,冷却剂的对流传热系数以及在冷却回路中循环冷却剂所需的泵送功率。通过理论计算机仿真模型预测的对流传热系数增强,对于0.05体积%的纳米流体,约为60%,而对于0.5体积%的纳米流体,对流传热系数约为74%。作为这种增强的结果,通过使用0.05体积%的纳米流体浓度,发现散热器的前部面积减少了〜26%,而对于0.5体积%的浓度只能稍微增加(即进一步〜1%)纳米粒子。在浓度为0.05vol%的情况下,与将50/50水-EG用作系统冷却剂相比,用于循环从PEMFC提取2.1 kW热量所需的冷却剂(即纳米流体)所需的泵送功率增加了5%。通过将纳米颗粒的浓度从0.05体积%增加到0.5体积%,该泵送功率显示出可忽略的进一步增加。连同对纳米流体的热物理性质的理论预测,在RMIT化学工程实验室中制备了样品纳米流体,并通过实验测量了它们的电和热物理性质(即热导率,粘度,比热和密度)。将实验数据用于理论计算机仿真模型中,以将模型的输出与通过使用纳米流体的理论预测特性获得的结果进行比较。实验台架是基于2.4 kW PEMFC开发的,旨在研究PEMFC系统的电气和热性能。为了研究PEMFC系统的电气和热性能,首先使用50/50水-EG运行PEMFC。在使用50/50水-EG进行实验之后,使用0.05体积%和0.5体积%的ZnO纳米流体,0.5体积%的TiO2和0.5体积%的Al2O3纳米流体进行了更多实验。在使用各种冷却剂的实验期间,冷却剂质量流率和燃料电池入口温度在燃料电池的相同工作点(即50 A)下保持恒定。当使用50/50水-EG和不同类型的纳米流体时,极化曲线没有发现变化,这表明由于使用纳米流体作为冷却剂而没有漏电。另一方面,将实验获得的热性能数据用于验证计算机仿真结果。计算机仿真模型的结果与实验获得的PEMFCs结果相匹配,误差可接受(即低于10%)。

著录项

  • 作者

    Islam M;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号